Daidzeinのソースを表示
←
Daidzein
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
{{Distinguish|Daidzin}} {{Lead too short|date=April 2013}} {{Use dmy dates|date=March 2020}} {{Chembox | Watchedfields = changed | verifiedrevid = 443560562 | Reference = <ref>''Merck Index'', 11th Edition, '''2805'''.</ref> | ImageFile = Daidzein.svg | ImageSize = 220px | ImageFile1 = Daidzein-3D-balls.png | ImageSize1 = 220 | ImageAlt1 = Diazein molecule | IUPACName = 4′,7-Dihydroxyisoflavone | SystematicName = 7-Hydroxy-3-(4-hydroxyphenyl)-4''H''-1-benzopyran-4-one | OtherNames = 7-Hydroxy-3-(4-hydroxyphenyl)chromen-4-one<br />Daidzeol<br />Isoaurostatin |Section1={{Chembox Identifiers | IUPHAR_ligand = 2828 | Abbreviations = | ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} | ChemSpiderID = 4445025 | UNII_Ref = {{fdacite|correct|FDA}} | UNII = 6287WC5J2L | InChIKey = ZQSIJRDFPHDXIC-UHFFFAOYAG | ChEMBL_Ref = {{ebicite|correct|EBI}} | ChEMBL = 8145 | StdInChI_Ref = {{stdinchicite|correct|chemspider}} | StdInChI = 1S/C15H10O4/c16-10-3-1-9(2-4-10)13-8-19-14-7-11(17)5-6-12(14)15(13)18/h1-8,16-17H | StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} | StdInChIKey = ZQSIJRDFPHDXIC-UHFFFAOYSA-N | CASNo_Ref = {{cascite|correct|CAS}} | CASNo = 486-66-8 | EINECS = | PubChem = 5281708 | SMILES = O=C\1c3c(O/C=C/1c2ccc(O)cc2)cc(O)cc3 | InChI = 1/C15H10O4/c16-10-3-1-9(2-4-10)13-8-19-14-7-11(17)5-6-12(14)15(13)18/h1-8,16-17H | RTECS = | MeSHName = | ChEBI_Ref = {{ebicite|correct|EBI}} | ChEBI = 28197 | KEGG_Ref = {{keggcite|correct|kegg}} | KEGG = C10208 }} |Section2={{Chembox Properties | Formula = C<sub>15</sub>H<sub>10</sub>O<sub>4</sub> | MolarMass = 254.23 g/mol | Appearance = Pale yellow prisms | Density = | MeltingPtC = 315 to 323 | MeltingPt_notes = (decomposes) | BoilingPt = | BoilingPt_notes = | Solubility = | SolubleOther = | Solvent = | pKa = | pKb = }} |Section7={{Chembox Hazards | MainHazards = | NFPA-H = | NFPA-F = | NFPA-R = | NFPA-S = | FlashPt = | AutoignitionPt = | ExploLimits = | PEL = }} }} '''Daidzein (7-hydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-one)''' is a naturally occurring compound found exclusively in soybeans and other [[legumes]] and structurally belongs to a class of compounds known as [[isoflavones]]. Daidzein and other isoflavones are produced in plants through the [[Phenylpropanoids metabolism|phenylpropanoid pathway]] of secondary metabolism and are used as signal carriers, and defense responses to pathogenic attacks.<ref name=Jung>{{Cite journal |last1=Jung W.S. |last2=Yu |first2=O. |last3=Lau, C., S.M. |last4=O'Keefe |first4=D.P. |last5=Odell |first5=J. |last6=Fader |first6=G. |last7=McGonigle |first7=B. |date=2000 |title=Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes |url=https://www.nature.com/articles/nbt0200_208 |journal=Nature Biotechnology |volume=18 |issue=2 |pages=208–212 |doi=10.1038/72671 |pmid=10657130 |s2cid=1717934 |issn=1546-1696}}</ref> In humans, recent research has shown the viability of using daidzein in medicine for [[menopausal]] relief, [[osteoporosis]], [[blood cholesterol]], and lowering the risk of some hormone-related [[cancer]]s, and [[heart disease]]. Despite the known health benefits, the use of both puerarin and daidzein is limited by their poor [[bioavailability]] and low water [[solubility]].<ref>{{ cite journal | last1 = Wang Y.C. | last2=Yang M. | last3 = Qin J.J. | last4 = Wa W.Q. | date = 2022 | title = Interactions between puerarin/daidzein and micellar casein | journal = Journal of Food Biochemistry | volume = 46 | issue = 2 | page = e14048 | doi = 10.1111/jfbc.14048 | pmid=34981538 | s2cid=245670986 | doi-access = free }}</ref> ==Natural occurrence== Daidzein and other isoflavone compounds, such as [[genistein]], are present in a number of [[plant]]s and [[herb]]s like kwao krua (''[[Pueraria mirifica]]'') and [[kudzu]]. It can also be found in ''[[Maackia amurensis]]'' cell cultures.<ref>{{Cite journal |last1=Fedoreyev |first1=S.A. |last2=Pokushalova |first2=T.V. |last3=Veselova |first3=M.V. |last4=Glebko |first4=L.I. |last5=Kulesh |first5=N.I. |last6=Muzarok |first6=T.I. |last7=Seletskaya |first7=L.D. |last8=Bulgakov |first8=V.P. |last9=Zhuravlev |first9=Y.N. |date=2000 |title=Isoflavonoid production by callus cultures of Maackia amurensis |url=https://www.sciencedirect.com/science/article/pii/S0367326X00001295 |journal=Fitoterapia |volume=71 |issue=4 |pages=365–372 |doi=10.1016/S0367-326X(00)00129-5|pmid=10925005 }}</ref> Daidzein can be found in food such as [[soybean]]s and soy products like [[tofu]] and [[textured vegetable protein]]. Soy isoflavones are a group of compounds found in and isolated from the soybean. Of note, total isoflavones in soybeans are—in general—37 percent daidzein, 57 percent genistein and 6 percent [[glycitein]], according to [[United States Department of Agriculture|USDA]] data.<ref>{{ cite web | title = Isoflavones contents of food | url = http://www.isoflavones.info/isoflavones-content.php | publisher = Top Cultures | access-date = 2012-05-15 }}</ref> Soy germ contains 41.7 percent daidzein.<ref>{{cite journal | last = Zhang | first = Y. |author2=Wang, G. J. |author3=Song, T. T. |author4=Murphy, P. A. |author5=Hendrich, S. | title = Urinary disposition of the soybean isoflavones daidzein, genistein and glycitein differs among humans with moderate fecal isoflavone degradation activity | journal = The Journal of Nutrition | year = 1999 | volume = 129 | issue = 5 | pages = 957–962 | pmid = 10222386 | doi = 10.1093/jn/129.5.957 | doi-access = free }}</ref> == Biosynthesis == ===History=== The [[isoflavonoid]] pathway has long been studied because of its prevalence in a wide variety of plant species, including as pigmentation in many flowers, as well as serving as signals in plants and microbes. The isoflavone synthase (IFS) enzyme was suggested to be a P-450 oxygenase family, and this was confirmed by Shinichi Ayabe's laboratory in 1999. IFS exists in two isoforms that can use both [[liquiritigenin]] and [[naringenin]] to give daidzein and [[genistein]] respectively.<ref name =Winkel>{{ cite journal | last = Winkel-Shirley | first = B. | date = 2001 | title = Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology | journal = Plant Physiology | volume = 126 | issue = 2 | pages = 485–493 | doi = 10.1104/pp.126.2.485 | pmid = 11402179 | pmc = 1540115 | doi-access = free }}</ref> ===Pathway=== Daidzein is an isoflavonoid derived from the [[shikimate pathway]] that forms an oxygen containing heterocycle through a cytochrome P-450-dependent enzyme that is [[Nicotinamide adenine dinucleotide phosphate|NADPH]] dependent. The biosynthesis of daidzein begins with L-phenylalanine and undergoes a general phenylpropanoid pathway where the shikimate derived aromatic ring is shifted to the adjacent carbon of the heterocycle.<ref name=Dewick>{{Cite book |last=Dewick |first=P.M. |title=Medicinal Natural Products: A Biosynthetic Approach |publisher=Wiley |year=2009 |isbn=978-0-470-74168-9 |edition=3rd |pages=137–175 |type=E-book |oclc=259265604}}</ref> The process begins with phenylalanine ligase (PAL) cleaving the amino group from L-Phe forming the unsaturated carboxylic acid, [[cinnamic acid]]. Cinnamic acid is then hydroxylated by membrane protein cinnamate-4-hydroxylase (C4H) to form [[p-coumaric acid]]. P-coumaric acid then acts as the starter unit which gets loaded with [[coenzyme A]] by 4-coumaroyl:CoA-ligase (4CL). The starter unit (A) then undergoes three iterations of [[malonyl-CoA]] resulting in (B), which enzymes [[chalcone synthase]] (CHS) and chalcone reductase (CHR) modify to obtain trihydroxychalcone. CHR is NADPH dependent. [[Chalcone isomerase]] (CHI) then isomerizes trihydroxychalcone to [[liquiritigenin]], the precursor to daidzein.<ref name =Winkel /> A radical mechanism has been proposed in order to obtain daidzein from liquiritigenin, where an iron-containing enzyme, as well as NADPH and oxygen cofactors are used by a 2-hydroxyisoflavone synthase to oxidize liquiritigenin to a radical intermediate (C). A 1,2 aryl migration follows to form (D), which is subsequently oxidized to (E). Lastly, dehydration of the hydroxy group on C2 occurs through a [[2-hydroxyisoflavanone dehydratase]] (specifically ''[[GmHID1]]'') to give daidzein.<ref name=Dewick /><ref name=Jung /> [[File:Daidzein v2.gif|thumb|Proposed daidzein biosynthesis]] ==Research== Daidzein has been found to act as an [[agonist]] of the [[GPER]] (GPR30).<ref name="ProssnitzBarton2014">{{cite journal|last1=Prossnitz|first1=E.R. |last2=Barton|first2=M. |title=Estrogen biology: New insights into GPER function and clinical opportunities|journal=Molecular and Cellular Endocrinology|volume=389|issue=1–2|year=2014|pages=71–83|doi=10.1016/j.mce.2014.02.002|pmid=24530924|pmc=4040308}}</ref> ==Pathogen interactions== Because daidzein is a defensive factor, ''[[Pseudomonas syringae]]'' produces the [[HopZ1b]] effector which degrades a ''GmHID1'' product.<ref name="Bauters-et-al-2021">{{cite journal | last1=Bauters | first1= L. | last2= Stojilković | first2 = B. | last3 =Gheysen | first3 = G. | title=Pathogens pulling the strings: Effectors manipulating salicylic acid and phenylpropanoid biosynthesis in plants | journal=[[Molecular Plant Pathology]] | publisher=[[British Society for Plant Pathology]] ([[Wiley-Blackwell|Wiley]]) | date=2021 | volume= 22 | issue= 11 | pmid=34414650 | doi=10.1111/mpp.13123 |pmc=8518561 | pages=1436–1448| doi-access=free }}</ref> ==Derivatives== * [[Glyceollin]], a type of [[phytoalexin]]<ref name="Bauters-et-al-2021" /> ===Glycosides=== * [[Daidzin]] is the 7-O-[[glucoside]] of daidzein. * [[Puerarin]] is the 8-C-glucoside of daidzein. ==Plants containing daidzein== * ''Maackia amurensis'' * [[Pueraria montana var. lobata|''Pueraria montana'' var. ''lobata'']]''{{ space | thin }}<ref name= Chen >{{ cite journal | author = Chen G. | author2 = Zhang J.X. | author3 = Ye J.N. | year = 2001 | title = Determination of Puerarin, Daidzein and Rutin in ''Pueraria lobata'' (Willd.) Ohwi by Capillary Electrophoresis with Electrochemical Detection | journal = [[Journal of Chromatography A]] | volume = 923 | issue = 1–2 | pages = 255–262 | doi = 10.1016/S0021-9673(01)00996-7 | pmid = 11510548 }}</ref>''<ref name="eisp">{{ cite journal | author = Xu H.N. | author2 = He C.H. | date = 2007 | title = Extraction of Isoflavones from Stem of ''Pueraria lobata'' (Willd.) Ohwi Using n-Butanol / Water Two-Phase Solvent System and Separation of Daidzein | journal = Separation and Purification Technology | volume = 56 | issue = 1 | pages = 255–262 | doi = 10.1016/j.seppur.2007.01.027 }}</ref> * ''[[Pueraria thomsonii]]''{{ space | thin }}<ref name="sdpd">{{cite journal |author=Zhou H.Y. |author2=Wang J.H. |author3=Yan F.Y. |date=2007 |title=[Separation and Determination of Puerarin, Daidzin and Daidzein in Stems and Leaves of ''Pueraria thomsonii'' by RP-HPLC] |journal=Zhongguo Zhong Yao Za Zhi |language=zh |volume=32 |issue=10 |pages=937–939 |pmid=17655152}}</ref> ==References== {{Reflist}} {{Isoflavones}} {{Phytoestrogens}} {{Navboxes | title = [[Pharmacodynamics]] | titlestyle = background:#ccccff | list1 = {{Estrogen receptor modulators}} {{Estrogen-related receptor modulators}} {{Glycine receptor modulators}} {{PPAR modulators}} }} [[Category:3α-Hydroxysteroid dehydrogenase inhibitors]] [[Category:Isoflavones]] [[Category:Glycine receptor antagonists]] [[Category:GPER agonists]] [[Category:Phytoestrogens]] [[Category:Selective ERβ agonists]]
Daidzein
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
日本語
表示
閲覧
履歴表示
その他
検索
案内
索引
脳科学辞典について
最近完成した項目
編集履歴
執筆にあたって
引用の仕方
著作権について
免責事項
問い合わせ
各学会編集のオンライン用語辞典
About us (in English)
Twitter (BrainScienceBot)
ツール
リンク元
関連ページの更新状況
特別ページ
ページ情報
他のプロジェクト