シナプスタグ仮説のソースを表示
←
シナプスタグ仮説
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
<div align="right"> <font size="+1">[http://researchmap.jp/okadada 岡田 大助]</font><br> ''北里大学 医学部 生化学''<br> DOI [[XXXX]]/XXXX 原稿受付日:2012年6月6日 原稿完成日:2013年月日<br> 担当編集委員:[http://researchmap.jp/Bito 尾藤 晴彦](東京大学 大学院医学系研究科 神経生化学分野)<br> </div> 英語名:synaptic tagging hypothesis, synaptic tag hypothesis {{box|text= 新規に細胞体で合成されるタンパク質が後期長期増強現象に必要であるが、合成されたタンパク質はシナプス可塑性が起こったシナプスに特異的に作用しなければならない。その仕組みとしてシナプスタグが仮説として提案された。近年実験的に細胞体で神経活動依存的に合成されたタンパク質が可塑性が起こったシナプスへいく事が実証され、その存在が確認された。その分子実体は}} ==シナプスタグ仮説の提唱== 海馬CA1領域で[[CA3]]領域に由来する[[Schaffer側枝]]を刺激すると、CA1領域[[錐体細胞]]のシナプス反応が記録できる。ここに頻回刺激(例えば100 Hz1秒間の刺激)を与えるとシナプスの反応が長期に増強する。これを長期増強現象 (long-term potentiation)と呼び、記憶学習の細胞レベルでの現象と考えられ、多くの研究がなされてきている。 通常使われる刺激条件では、LTP誘導後、2時間程度以内に反応は減弱し、基線レベルに戻ってくる。しかし、条件を選ぶ事により(たとえば刺激回数を複数回にする、[[ドーパミン]]のアゴニストを加えるなど)、もっと長期のLTPを誘導する事が出来る。この両者の差は単なる量的なものではなく、初期長期増強 (early LTP, E-LTP)はタンパク質合成を必要としない一方、後期長期増強現象 (late LTP, L-LTP)は新しいタンパク質の合成を必要とする。 新規に合成されたタンパク質はシナプス部で機能し、その結果後期長期増強が発現すると考えられる。ところで、一つのニューロンには多数のシナプスが存在するため、新規合成されたタンパク質が長期増強刺激を起こしたシナプスでのみ機能するためには、入力を受けたシナプス特異的に新規タンパク質が機能する仕組み、つまり後期可塑性の入力特異性機構が必要である。FreyとMorrisはこの仕組みとして主に次の三つの可能性を検討した。<ref name=ref1><pubmed>9020359</pubmed></ref> <ref name=ref2><pubmed>9610879</pubmed></ref>。 #局所合成。即ち[[樹状突起]]に局在する[[wikipedia:ja:mRNA|mRNA]]が活動依存的に翻訳される。 #メイル仮説。細胞体で合成されたタンパク質には予め目的地がコードされている、もしくは目的地特異的な輸送ルートで活動シナプスに運ばれる。 #シナプスタグ仮説。細胞体で新規合成された後期可塑性関連タンパク質が機能できるシナプスでは、何らかの生化学的活性が活性化しており、この活性によって後期長期増強の発現が可能になる。この仮想活性をシナプスタグと呼ぶ。 彼らは、次のような実験から、これらの可能性中でもシナプスタグ仮説が結果をうまく説明すると提唱した。[[wikipedia:ja:ラット|ラット]][[海馬]]急性[[脳スライス標本|切片]]で[[CA1]]野[[Schaffer側枝]]を二箇所刺激し、独立した二経路の[[集合シナプス電位]]を一つの記録電極から測定した(図1)。 一方の刺激電極S1に長く持続する[[後期長期増強]]を起こす電気刺激を与えた後、他方の刺激電極S2からは、普通であれば持続の短い初期長期増強のみを起こす刺激を与えた。S1経路では予想通り入力特異的な後期長期増強が見られた。一方S2経路には、初期長期増強のみ起きる刺激を加えたのにに反して後期長期増強が見られた(図2)。S2の変化は[[連合性]]後期長期増強と呼ばれる。 [[Image:図1二経路実験.jpg|thumb|500px|'''図1 二経路実験の配置'''<br>海馬急性切片に刺激電極S1S2と記録電極Rを置く。]] [[Image:図2連合性後期可塑性.jpg|thumb|600px|'''図2 連合性後期可塑性'''<br>太矢印でS1に後期可塑性を起こす刺激、細矢印でS2に初期可塑性を起こす刺激を与えた。S1の集合シナプス後電位の時間変化が実線、S2のものが破線。]] 二経路実験で、S1に後期長期増強を起こす刺激を与えた後、タンパク質合成を阻害した状態でS2に初期長期増強を起こす刺激を与えた場合も、両経路に後期長期増強が見られた(図3)。つまり、S2シナプス近傍の局所合成は不要であること、及び、S1刺激で合成されたタンパク質がS2シナプスに運ばれたことを示している。細胞体で合成されたタンパク質は全てのシナプスに使用のチャンスがある状態で輸送されることになるので、メイル仮説は否定される。 一方、シナプスタグ仮説によれば、細胞体で合成されたシナプスタンパク質は輸送途上では目的地を持たず全ての樹状突起を輸送されており、シナプスタグが活性化したシナプスに取り込まれて機能する。この実験結果は、S1とS2の両シナプスではシナプスタグが活性化しているので新規合成タンパク質が機能し後期可塑性が発現したと説明できる。FreyとMorrisらは更にS1とS2の順番を入れ替える実験を行い、S2の弱い刺激の後でタンパク合成を起こしても連合性後期長期増強が起きることも見出した<ref name=ref4><pubmed>9704995</pubmed></ref>。 [[Image:図3シナプスタグ仮説.jpg|thumb|600px|'''図3.'''四角の時点でタンパク質合成阻害剤を与えてもS1、S2経路ともに後期可塑性がおきた。この結果はシナプスタグ仮説を支持する。]] 以上から、後期可塑性の入力特異性機構としてシナプスタグ仮説が有力視され、シナプスタグは以下の性質を持つと思われた<ref name=ref2><pubmed>9610879</pubmed></ref>。 #シナプスタグは初期可塑性が起きたシナプスで[[NMDA型グルタミン酸受容体]]依存的かつ入力特異的に活性化される。 #細胞体で新規合成されたタンパク質は目的地を持たずに樹状突起を輸送され、シナプスタグの活性化されたシナプスでのみ機能できる。 #シナプスタグの活性化にはタンパク質合成は不要である。 #シナプスタグは一度活性化されるとしばらく活性を保つ。 一般に後期可塑性は、少なくとも、先行する初期可塑性、新規タンパク質合成、シナプスタグ機構、シナプス部での新規タンパク質の機能発現等の複数の内部過程により起きると考えられている。二経路実験ではこれら複数の過程を経た最終結果である連合性可塑性の有無を測定するので、ある分子が連合性後期可塑性に必要だとしても、それがシナプスタグの仕組みに関与するかどうかを二経路実験から決定することはできない。この問題はシナプスタグの定義や後期可塑性の表現機構に直結しており、現時点ではこの区別は難しい。 細胞体で合成され樹状突起を非特異的に輸送されるタンパク質は、シナプス部での機能に先立ってシナプスに取り込まれる (capture)。この二つの過程を分けてsynaptic tagging and capture という語が用いられることがある。<ref name=ref3><pubmed>19443779</pubmed></ref>の結果は、Capture が入力特異的に起きるということなので、capture がtaggingの機能を持つとも言える。一方、captureされたタンパク質が機能して可塑性を起こすために、シナプス部、特に[[シナプス後膜肥厚]] (postsynaptic density, PSD)の分子集合体の修飾が必要ならば、この修飾もシナプスタグである。Frey とMorrisの初期の実験で考えられたsensitization仮説はこの方向の考え方であった<ref name=ref4><pubmed>9704995</pubmed></ref>。 ==シナプスタグ仮説の実証== シナプスタグ仮説の実証のために、岡田らはラット海馬[[初代培養|培養神経細胞]]において仮説が示唆するようにcaptureされるタンパク質があるかどうか調べた<ref name=ref3><pubmed>19443779</pubmed></ref>。[[Vesl-1S]]は後期長期増強時に細胞体で発現誘導されるタンパク質で、シナプスのlong-form Veslタンパク質が作るネットワークを壊すことでシナプス可塑性を起こすきっかけを作るとされる[[最初期遺伝子産物]]である<ref name=ref5><pubmed>18006237</pubmed></ref><ref name=ref12867517><pubmed>12867517</pubmed></ref><ref name=ref19345194 ><pubmed> 19345194 </pubmed></ref>。そのため、彼らはすると、[[細胞体]]で合成された[[Vesl-1S]] ([[Homer1a]]) タンパク質は全ての樹状突起を輸送される。ところが、運ばれたVesl-1Sは[[NMDA型グルタミン酸受容体]]刺激があったシナプスにだけ集積し、それ以外のシナプスには集積しないことが観察された。Vesl-1Sタンパク質の樹状突起からスパイン内への移動がシナプス入力により制御されていることはシナプスタグの上記性質を全て満たしており、シナプスタグという仕組みが存在する事が実証された。 シナプスタグの成立に関与する分子として、[[PKM zeta|タンパク質キナーゼMζ]] (protein kinase Mζ, PKMζ)<ref name=ref6><pubmed>15958741</pubmed></ref>、[[cAMP依存性タンパク質キナーゼ]] ([[cAMP-dependent protein kinase]], [[A-kinase]], [[PKA]])、[[MEK1/2]]、[[カウシウム/カルモジュリン依存性タンパク質キナーゼII]] ([[calcium/calmodulin dependent protein kinase|calcium/calmodulin dependent protein kinase]], [[CaMKⅡ]])<ref name=ref7><pubmed>17494693</pubmed></ref>、[[ニューロプシン]] <ref name=ref8><pubmed>18216192</pubmed></ref> など明らかにした。 シナプスタグの分子的実態としては、岡本らは[[アクチン]]の重要性を提唱している<ref name=ref15361876 ><pubmed>15361876</pubmed></ref><ref name=ref19996366 ><pubmed> 19996366 </pubmed></ref>。アクチンは[[興奮性シナプス]]での主要な[[細胞骨格]]成分として[[樹状突起棘]]([[スパイン]])の形態形成と維持に関わっている他、その他の多数のタンパク質の結合部位としても機能している<ref name=ref19996366 />。LTP誘導に伴い、アクチンが増加する事によりスパインの容積が増大する事で、シナプスの結合容量が増える。これは可塑性が起こったシナプス特異的にNMDA受容体活性化依存的に起こり(上の条件1.)、またタンパク質合成は必要としない(上の条件3.)。一回形成されたアクチンは数十分の単位で安定である(上の条件4.)。これにより、アクチンは新規に合成されたタンパク質をcaptureするシナプスタグとしての条件を満たしている。実際に、薬理学的にアクチンを増加させると、アクチン結合タンパク質がシナプスにて増加する<ref name=ref15361876 />。一方、アクチン重合を阻害する事により、後期長期増強が起こらなくなる<ref name=ref19793974 ><pubmed>19793974</pubmed></ref>。 後期可塑性に伴って新規に発現誘導される遺伝子はVesl-S以外にも少なくとも 100 近くに及ぶ<ref name=ref9><pubmed>10820183</pubmed></ref>。新規タンパク質の機能やシナプス部への局在・活性化の機構はタンパク質毎に異なるだろうから、シナプスタグはタンパク質毎に異なる仕組みである可能性が考えられる。局所合成によりシナプス内の環境が調節された後に、[[最初期遺伝子]]産物群、さらに遅れてやってくる遺伝子産物群などが作用することで可塑性が起きると考えれば、captureとtaggingは入れ子構造になるので厳密に区別できないのではないだろうか。 ==シナプスタグ仮説の発展== [[シナプス前]]線維が運ぶ情報はシナプス後細胞が興奮すれば次の細胞に伝えられる。この興奮しやすさの制御がシナプス可塑性の機能である。細胞が受ける複数の入力の統合によりその細胞が発火するかどうかが決まるので、シナプス可塑性により増強されたシナプスは発火に貢献する確率が高くなり、そのシナプスが運んでいる情報が次に伝えられやすくなる。この連鎖により、ある入力で一定の神経回路が作動するようになる。シナプス可塑性を起こすシナプスを決めるということは、シナプスを選ぶことにより伝える情報を選ぶということである。シナプス可塑性は記憶などの脳高次機能を担う神経回路網の経験依存的形成に関わる重要な細胞レベルの仕組みとして研究が盛んである。そして、シナプスタグは後期シナプス可塑性の仕組みの一部として、何を覚えるかなど情報の選別に関わる仕組みと考えられる。このため、より高次レベルの研究においても、タグという言葉が使われる傾向にある。狭義のシナプスタグ以外のタグには以下のようなものがある。 === 局所合成 === 後期シナプス可塑性に必要な新規タンパク質の一部は、樹状突起や[[スパイン]]に局在するmRNAを用いて合成される。ラット海馬で二経路実験を用いた測定では連合性可塑性に局所合成は必要ではないが<ref name=ref1><pubmed>9020359</pubmed></ref>、条件によってはPKM zetaなどの局所合成に依存している<ref name=ref10><pubmed>15728837</pubmed></ref>。 局所合成は[[wikipedia:ja:アメフラシ|アメフラシ]]では後期可塑性の主要なメカニズムと考えられシナプスタグに相当する仕組みも報告されている<ref name=ref11><pubmed>19443737</pubmed></ref>。 後期可塑性で発現誘導されるタンパク質は多岐に亘る。局所合成と細胞体での新規合成はおそらく共に必要であるが、前者はmRNAが既存で、しかもシナプス近傍で起きるのに対し、後者はmRNAの転写から始まりシナプス入力による[[wikipedia:ja:転写|転写]]開始シグナルが細胞核に伝わる時間と転写後翻訳を経てシナプス近傍まで輸送される時間が必要である。従って、これら二つの機構を併用することで、異なる種類のタンパク質が異なるタイミングで後期可塑性に貢献できると思われる。 シナプス可塑性の入力特異性は厳密ではなく、周囲のシナプスが影響を受けることが報告されている<ref name=ref12><pubmed>9230437</pubmed></ref>。局所合成されシグナル伝達を担う分子が一定のコンパートメント内のシナプスに影響を与えると、コンパートメント単位での可塑性[[clustered plasticity]]が起きる可能性があり、実験的にも確認されている<ref name=ref13><pubmed>16791146 </pubmed></ref> <ref name=ref14><pubmed>21220104</pubmed></ref>。 ===Inverse tag === 後期可塑性を起こす強いシナプス入力があった細胞内で、活動の低かったシナプスには特異的に後期長期[[抑圧]]がおきる。これには[[Arc]]/Arg3.1タンパク質が関与しており、[[カルシウム]]活動が低く[[カルモジュリン]]が活性化していないシナプスでは[[カルシウムカルモジュリン依存性キナーゼⅡ]]βがArc/Arg3.1タンパク質を結合し蓄積することが可塑的変化を起こす「逆シナプスタグ」として働き、その結果[[GluR1]]受容体の表面発現が減少する[[長期抑圧]]が起きることが報告されている <ref name=ref15><pubmed>22579289</pubmed></ref>。 ===Behavioral tag === 二つの海馬依存的行動タスクを、一つは[[短期記憶]]を作るような条件で、他方は[[長期記憶]]を作るような条件を用いて、同時にトレーニングすると、両タスクで長期記憶が形成された<ref name=ref16><pubmed>19706547</pubmed></ref>。二経路実験をそのまま行動実験に移したような実験パラダイムなので、この連合性長期記憶を起こす仕組みはbehavioral tagと呼ばれている。二つの記憶をコードする[[細胞集成体]]に共通して活動する細胞があることが前提になると考えられるが、詳細は分かっていない。 === システム固定化 === 海馬で獲得された記憶の一部は時間が経つと[[想起]]に海馬活動が不要になり、皮質の活動により想起されるようになる。この移行を[[システム固定化]]、[[皮質]]依存になった記憶を[[遠隔記憶]]と言う。システム固定化の仕組みの詳細はまだ不明だが、初めに海馬が各モダリティ担当の皮質に情報を送り返し、遠隔記憶の想起時に活動する神経回路網を皮質に作ると考えられる。この時、複数の皮質に分散したシステム固定化後の記憶が一つの記憶として想起できるためには、これらが目印によってつながっている必要がある。この目印が「タグ」という言葉で表現されている<ref name=ref17><pubmed>21330548</pubmed></ref>>。 == 関連項目 == *[[シナプスキャプチャー]] Synaptic capture *[[後期シナプス可塑性]] late-phase synaptic plasticity *[[連合性シナプス可塑性]] associative synaptic plasticity == 参考文献 == <references />
このページで使用されているテンプレート:
テンプレート:Box
(
ソースを閲覧
)
シナプスタグ仮説
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
日本語
表示
閲覧
履歴表示
その他
検索
案内
索引
脳科学辞典について
最近完成した項目
編集履歴
執筆にあたって
引用の仕方
著作権について
免責事項
問い合わせ
各学会編集のオンライン用語辞典
About us (in English)
Twitter (BrainScienceBot)
ツール
リンク元
関連ページの更新状況
特別ページ
ページ情報
他のプロジェクト