プロモーターのソースを表示
←
プロモーター
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
<div align="right"> <font size="+1">[http://researchmap.jp/satoshikida 喜田 聡]、[http://researchmap.jp/serita/?lang=japanese 芹田龍郎]</font><br> ''東京農業大学 応用生物科学部バイオサイエンス学科''<br> DOI [[XXXX]]/XXXX 原稿受付日:2013年12月9日 原稿完成日:2013年月日<br> 担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)<br> </div> 英語名:promoter 独:Promotor, Promoter 仏:promoteur {{box|text= プロモーターとは[[DNA]]における[[転写制御]]を担う領域である。[[転写調節因子]]群の働きにより、転写基本因子群と[[RNAポリメラーゼ]]がプロモーター上に[[転写開始複合体]]を形成し、[[転写]]が開始される。特に、[[mRNA]]の転写は、それぞれの細胞において、発現させる遺伝子を選択する、また、遺伝子の発現量を規定する重要なステップであるため、プロモーターにおける転写制御は生命現象の中心的な反応であるとも言える。}} == プロモーターとは == [[ファイル:Kida Fig.1.png|thumb|right|300px| '''図1 プロモーターの概略'''<br>転写調節因子、転写仲介因子の働きにより、TFIID中心とする基本転写因子群とRNA pol IIがTATAやイニシエーターを標的としてプロモーター上に誘引され、転写開始複合体を形成し、転写反応が開始される。 ]] プロモーターとはDNAにおける遺伝子の転写制御を行う領域である。 [[真核生物]]において、狭義では、転写基本因子群とRNAポリメラーゼが結合するDNA領域をプロモーターと呼ぶ<ref name=ref1>'''Jocelyn E Krebs, Elliott S Goldstein, Stephen T Kilpatrick'''<br>Genes XI, 11 edition<br>''Jones & Bartlett Learning, Burlington, 2013''<br></ref>。 一方、広義では、この領域を[[コアプロモーター]]と呼び、[[転写調節因子]]群が結合する[[調節エレメント]]も含めてプロモーターと呼ぶことも多い。 真核生物の場合、[[RNA合成酵素]]である[[RNAポリメラーゼ]]は[[PolI]]、[[PolII]]、[[PolII]]の3種類存在し、3つのクラスのプロモーターが存在している。PolIが働くクラスIのプロモーターからは[[rRNA]]、PolIIが働くクラスIIのプロモーターからは[[mRNA]]、PolIIIが働くクラスIIIのプロモーターからは[[tRNA]]を中心とする[[低分子RNA]]が転写される<ref name=ref1 />。特に、mRNAの転写制御を担うクラスIIのプロモーターに関しては、各遺伝子がそれぞれ異なる転写制御を受けるため、多様な転写調節機構が存在している。コアプロモーターの上流あるいは下流には様々な転写調節因子が結合して正負の転写制御が行われる調節エレメントが存在している。 == コアプロモーター == 転写基本因子とRNAポリメラーゼが結合して転写開始複合体が形成される、転写開始に必要最小限のDNA領域であり、転写開始点の前後の数十base pair (bp)程度の大きさである<ref name=ref1 />。クラスIIのプロモーターには、転写開始点を含む[[イニシエーター]]、また、転写開始点上流に[[TATAボックス]]やTFIIB認識領域などが存在する<ref name=ref1 />。 === 転写基本因子 === [[TFIIA]], [[TFIIB]], [[TFIID]], [[TFIIE]], [[TFIIF]], [[TFIIH]]などが存在し、[[RNA polII]]と共にコアプロモーター上に[[転写開始複合体]]を形成することで、RNApolIIに正確な位置([[転写開始点]])から転写を開始させる役割を果たしている1)。転写基本因子群の多くはサブユニット構造をとる複合体であり、特に、TFIIDは[[TATAボックス結合タンパク質]]([[TATA-binding protein]]; TBP)とそのサブユニット群[[TBP結合因子]]([[TBP-associated factor]]; TAF)から構成され、転写開始複合体を形成する上で中心的な役割を果たす<ref name=ref2><pubmed>7917332</pubmed></ref><ref name=ref3><pubmed>8811195</pubmed></ref><ref name=ref4><pubmed>21420851</pubmed></ref>。興味深いことに、TBPはTATAボックス認識に貢献するばかりではなく、以下に紹介するTATAレスプロモーターからの転写、さらには、クラスI及びクラスIIIのプロモーターからの転写にも必要であることが明らかにされており、真核細胞における転写制御において必須な役割を果たしている<ref name=ref5><pubmed>8422684</pubmed></ref><ref name=ref6><pubmed>1657708</pubmed></ref>。 ===TATAボックスとTATAレスプロモーター === TATAボックスとは転写開始点の約25bp程度上流に存在する塩基配列(TATAA)であり、TFIIDのサブユニットの一つTBPによって認識される<ref name=ref1 /><ref name=ref7>'''Tom Strachan, Andrew Read'''<br>Human Molecular Genetics, Fourth Edition<br>''Garland Science, New York, 2010''</ref>。しかし、クラスIIプロモーターにおいて、TATAボックスを有するプロモーターは意外に少なく([[ヒト]]では約30%)、これ以外はTATAボックスを持たずに、イニシエーターと下流プロモーター配列 (downstream promoter element; DPE)を有するTATAレスプロモーターであり、GCボックスを有することも多い<ref name=ref1 /><ref name=ref7 />。TATAレスプロモーターはハウスキーピング遺伝子に多く見られ、複数の転写開始点を持つことも多い<ref name=ref7 />。TATAボックスを有するプロモーターでは転写制御が厳格かつ劇的に行われる傾向が高いのに対して、TATAレスプロモーターには恒常的な活性を示すものが多い。 == 調節エレメント == 転写調節因子が認識して結合する特異的配列を示すDNA領域のことを調節エレメントと呼び、この調節エレメントを介してプロモーターからの転写がコントロールされている<ref name=ref1 /><ref name=ref7 />)。調節エレメントはコアプロモーター近傍に存在するのみではなく、プロモーター領域の上流や下流に存在しており、転写開始点から離れた調節エレメントからの遠隔制御も行われている<ref name=ref1 /><ref name=ref7 />)。プロモーターから距離があり、アクティベーターが結合する領域を[[エンハンサー]]、一方、リプレッサーが結合する領域をサイレンサーと呼ぶ<ref name=ref1 /><ref name=ref7 />。また、情報伝達経路の下流に存在する転写調節因子が結合する調節配列を[[応答エレメント]]と呼ぶ。[[Activity-regulated cytoskeleton-associated protein]] ([[Arc]]) 遺伝子では、転写開始点から約7kpbも上流に強力な応答エレメントを有するエンハンサーが存在することが示されている<ref name=ref8><pubmed> 19116276 </pubmed></ref>。 例えば、[[cAMP]]情報伝達経路の下流に存在する応答エレメントは[[cAMP応答配列]]([[cAMP responsive element]]; CRE)である<ref name=ref9><pubmed> 9530494 </pubmed></ref><ref name=ref10><pubmed> 11483993 </pubmed></ref>。細胞内cAMPの濃度上昇に伴い活性化された[[Aキナーゼ]](Protein kinase A; [[PKA]])により転写調節因子[[CRE結合タンパク質]]([[CREB]])が[[リン酸化]]を受け、リン酸化型CREBがCREを介して転写活性化を誘導する<ref name=ref9 /><ref name=ref10 />。また、この転写活性化には、リン酸化型CREBのみが相互作用するコアクティベーター[[CREB結合タンパク質]](CBP)が必須である<ref name=ref11><pubmed> 8413673 </pubmed></ref>。また、応答エレメントには、[[カルシウム]]イオン情報伝達経路下流に存在するものや<ref name=ref12><pubmed> 9581763 </pubmed></ref>、[[エストロゲン]]、[[アンドロゲン]]、[[糖質コルチコイド]]、[[ビタミンD]]、[[レチノイン酸]]などをそれぞれ特異的リガンドとする[[核内受容体]]群が結合するものなどが存在する<ref name=ref13><pubmed> 16923397 </pubmed></ref>。 さらに、組織・細胞特異的な転写調節因子がおのおのの調節エレメントに結合することで、組織・細胞特異的遺伝子発現も制御されている。α[[カルシウムカルモジュリン依存性キナーゼII]]遺伝子の転写開始点より上流約8kbのプロモーター領域(α[[CaMKII]]プロモーター)は[[前脳]]領域の[[興奮性ニューロン]]特異的に働く強力なプロモーターとして神経科学研究によく用いられており、この8kb内に組織特異的を示すための必要十分な構成要素が含まれているものと考えられる<ref name=ref14><pubmed> 7781066 </pubmed></ref>。 == 転写調節機構 == ===転写調節因子=== 特異的DNA配列を認識して結合する転写調節因子群によって転写が正負に制御される。転写調節因子には、転写を活性化させる[[アクティベーター]]と、逆に、転写を抑制する[[リプレッサー]]が存在する<ref name=ref1 /><ref name=ref7 />。アクティベーターは、プロモーター上に転写基本因子群とRNApolIIとによる転写開始複合体の形成を促す<ref name=ref1 /><ref name=ref7 />。アクティベーターの多くは、転写基本因子やPolIIに直接相互作用するわけではなく、DNAに結合しない[[転写仲介因子|転写仲介(媒介)因子]]、[[コファクター]]群を介して転写開始複合体の形成を促進する<ref name=ref1 /><ref name=ref7 />。特に、自身はDNAに結合しないものの、転写調節因子群と相互作用し、転写を活性化する仲介因子を[[コアクティベーター]]、逆に、転写を抑制する仲介因子を[[コリプレッサー]]と呼ぶ<ref name=ref1 /><ref name=ref7 />。転写仲介因子やコファクターも多数のタンパク質からなる複合体を形成しており、しかも、転写基本因子群やpolIIもサブユニットにより構成されることから、プロモーター上には多種多様なタンパク質群が結集することで転写活性化が誘導されることが明らかにされている<ref name=ref1 /><ref name=ref7 />。 === エピジェネティクス制御 === [[ファイル:Kida Fig.2.png|thumb|300px|right| '''図2. エピジェネティクス転写制御'''<br>ヒストンテールがメチル化、アセチル化、リン酸化などの翻訳後修飾を受けて、クロマチン構造のリモデリングが引き起こされる。一方、プロモーター領域DNAのCpGアイランドがメチル化修飾を受けると、そのプロモーターからの転写が抑制される。このようなクロマチンリモデリングは転写制御の重要なステップとなっている)。以上のような、クロマチンリモデリングやDNAメチル化はエピジェネティクス転写制御と呼ばれる。]] 転写制御は転写調節因子、転写基本因子、転写仲介因子やコファクターの間でのタンパク質間相互作用によってのみ制御されるわけではない。プロモーター周辺領域の[[エピジェネティクス]]制御も転写制御に必須であることが1990年代の中頃から明らかにされた<ref name=ref1 /><ref name=ref7 />。具体的には、DNAと結合して[[クロマチン]]構造を形成する[[ヒストン]]群の翻訳後修飾、すなわち、[[アセチル化]](脱アセチル化)、[[メチル化]](脱メチル化)、リン酸化([[脱リン酸化]])を介して、プロモーター付近のクロマチン構造の変換(クロマチンリモデリンング)が行われる。このクロマチンリモデリングがプロモーターからの転写開始の効率、すなわち、転写を制御するタンパク質群のプロモーター領域への集合に大きく影響を及ぼしていると考えられている<ref name=ref1 /><ref name=ref7 />。以上のようなヒストンの[[翻訳後修飾]]にも多様性が観察されることから、ヒストンの修飾状態は「[[ヒストンコード]]」と呼ばれ、DNAの塩基配列情報の如く、ヒストンの修飾パターンが何らかの暗号的意味を持つのではないかと考えられている<ref name=ref15><pubmed> 11498575 </pubmed></ref>。また、[[CLOCK]]などのアクティベーター<ref name=ref16><pubmed> 16678094 </pubmed></ref>、CBP/p300、[[PCAF]]などのコアクティベーターは[[ヒストンアセチル化酵素]]活性を有すること<ref name=ref17><pubmed> 9296499 </pubmed></ref><ref name=ref18><pubmed> 11559745 </pubmed></ref>、一方、[[Sin3]]などのコリプレッサーは[[ヒストン脱アセチル化酵素]]活性を示すことが明らかにされており<ref name=ref19><pubmed> 9139820 </pubmed></ref>、このような[[転写因子]]群がプロモーター付近のヒストンリモデリングを直接制御する。 一方、このエピジェネティクス制御はヒストンばかりではなく、DNAにおいても観察される。DNAのメチル化はCpGアイランドのシトシンに多く観察されており、メチル化に富んだプロモーターは不活性化状態となり、その遺伝子からの転写が抑制される<ref name=ref1 /><ref name=ref7 />。DNAメチル化による転写不活性化はインプリンティング、X染色体不活性化を代表として、恒常的な転写制御に関与するものと考えられている。 エピジェネティクス制御は、より大規模なクロマチン構造の変化にも関与しており、[[ユークロマチン]]と[[ヘテロクロマチン]]の変換といった、よりマクロなレベルのクロマチンリモデリングも含んでおり、細胞特異的遺伝子発現を制御するマスターレギュレーター的な働きを担っている<ref name=ref1 /><ref name=ref7 />。また、遺伝子の境界を決定するDNA領域であるインシュレーターなどもこのようなクロマチン構造に大きな影響を及ぼすものと考えられる<ref name=ref1 /><ref name=ref7 />。 ==脳科学研究領域におけるプロモーターの応用== αCaMKIIプロモーターは[[トランスジェニック動物|遺伝子操作マウス]]作製に広く利用されている<ref name=ref14 />。これ以外には、外来遺伝子の発現を[[GABA]]ニューロンに限定されるための[[GAD67]]プロモーター<ref name=ref20><pubmed> 16088032 </pubmed></ref>、[[ドーパミン]]産生ニューロンに限定させるための[[チロシン水酸化酵素]]プロモーター<ref name=ref21><pubmed> 22153370 </pubmed></ref>、[[ドーパミン]][[D1受容体]]あるいは[[D2受容体]]発現ニューロンに限定させるためのD1及びD2受容体プロモーターなどが利用されている<ref name=ref22><pubmed> 20613723 </pubmed></ref>。一方、神経活動依存的遺伝子発現の活性化をモニターする、あるいは、遺伝子発現が誘導されたニューロンを標識するためのツールとして、[[c−fos]]遺伝子あるいはArc遺伝子のプロモーターが利用されている<ref name=ref8><pubmed> 11559745 </pubmed></ref><ref name=ref23><pubmed> 17761885 </pubmed></ref>。以上のプロモーター群は脳科学領域における強力な遺伝学的手法のツールとなっている。 ==関連項目== *[[転写制御因子]] *[[エピジェネティクス]] *[[エンハンサー]] ==参考文献== <references />
このページで使用されているテンプレート:
テンプレート:Box
(
ソースを閲覧
)
プロモーター
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
日本語
表示
閲覧
履歴表示
その他
検索
案内
索引
脳科学辞典について
最近完成した項目
編集履歴
執筆にあたって
引用の仕方
著作権について
免責事項
問い合わせ
各学会編集のオンライン用語辞典
About us (in English)
Twitter (BrainScienceBot)
ツール
リンク元
関連ページの更新状況
特別ページ
ページ情報
他のプロジェクト