カルシウムドメインのソースを表示
←
カルシウムドメイン
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
<div align="right"> <font size="+1">[http://researchmap.jp/read0180554 高橋 智幸]</font><br> ''同志社大学 生命医科学部医生命システム学科''<br> DOI:<selfdoi /> 原稿受付日:2012年10月18日 原稿完成日:2014年10月7日<br> 担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所) </div> 英語名:Calcium domain {{box|text= [[カルシウム]]イオン(Ca<sup>2+</sup>)が[[チャネル]]を通過して生じる細胞内の遊離カルシウム濃度上昇の空間的分布領域。カルシウムドメインは細胞外からのカルシウム流入、または[[小胞体]]からのカルシウム流出によって形成される。}} == カルシウムドメイン仮説 == [[Image:Calciumdomain-1.png|thumb|350px|'''図.カルシウムドメイン'''<br>[[カルシウム]]イオンがチャネルを通過して生じる細胞内の遊離カルシウム濃度上昇の空間的分布領域。細胞質にある内在性カルシウムバッファーの作用により、細胞膜の内側に沿って半円形に濃度分布すると推定される。ここでは既知のキレート剤によって濃度が起点濃度の1/e (37%)となる距離を示す。]] Chad & Eckert<ref name="ref1"><pubmed>6329349</pubmed></ref>によって提唱された。[[電位依存性カルシウムチャネル]]が短時間、開口することにより、細胞外から細胞内に流入したカルシウムは、[[細胞質]]にある内在性[[カルシウムバッファー]]の影響下、拡散により、[[細胞膜]]の内側に沿って半円形に濃度分布すると推定され、その空間分布をカルシウムドメインと呼んだ(図)。カルシウムドメインを形成する最小ユニットは単一チャネルであるが、複数チャネルがクラスターを形成すると、より大きなカルシウムドメインが形成される。カルシウムドメインの重複の程度はチャネル当たりのカルシウム流入量、カルシウムチャネルの分布密度、カルシウムバッファーの濃度と結合速度などによって決定される。 ==関与するチャネル == #細胞外カルシウムの細胞内流入を媒介するチャネル:電位依存性カルシウムチャネル、カルシウム透過型チャネル([[NMDA型グルタミン酸受容体]]チャネル、[[機械力受容チャネル]]、[[TRPチャネル]]、[[環状ヌクレオチド依存性チャネル]]、[[store-operated CRAC]]チャネルなど)<br> #[[細胞内カルシウムストア]]から細胞質への流出を媒介するチャネル:[[リアノジン受容体]]チャネル、[[IP3受容体|IP<sub>3</sub>受容体]]チャネル。 ==機能的役割 == #カルシウムチャネルの調節:細部内カルシウムによってカルシウムチャネルは活性化または不活性化される。 #カルシウム依存性チャネルの活性化:[[カルシウム依存性カリウムチャネル]]、[[カルシウム依存性クロライドチャネル]]が知られる。 #[[神経伝達物質]]の[[開口放出]]:[[シナプトタグミン]]などの低親和性カルシウム結合タンパク質により媒介される。 #[[シナプス小胞]]の取り込み([[エンドサイトーシス]]):シナプトタグミンなどの低親和性カルシウム結合タンパク質により媒介されるものと、[[カルモジュリン]]などの比較的低親和性カルシウム結合タンパク質により媒介されるものがあると推定されている<ref><pubmed>20562869</pubmed></ref>。 #[[シナプス伝達]]の修飾:カルモジュリンとの結合を介して、後シナプス[[受容体]]の密度を調節し、また前シナプス末端からの伝達物質放出を増強する。 #[[筋収縮]]。 #[[細胞内ストアカルシウム]]の放出促進(リアノジン受容体チャネル、IP<sub>3</sub>受容体チャネルからのカルシウムに依存したカルシウムの放出)。 #[[成長円錐]]の伸長([[TRPCチャネル]]などからのカルシウム流入)。 ==サイズ == カルシウムドメインのサイズは、多くの場合、光学解像度の限界を超えるため実測できない。そのため次善の策として、カルシウム結合速度の異なる[[カルシウムキレート剤]](表)を細胞内に負荷して、それによるカルシウム依存性機能の抑制率を定量して、ドメインサイズを推定することが行われている。 {|class="wikitable" |+表 代表的カルシウムキレート剤のK<sub>on</sub>とK<sub>D</sub> 文献<ref name="ref2"><pubmed>9278532</pubmed></ref> <ref name=ref11106608><pubmed>11106608</pubmed></ref>より。 |- | キレート剤 | 結合速度定数(K<sub>on</sub>)(1/M・s) | 解離定数(K<sub>D</sub>) (μM) |- | [[BAPTA]]<ref name="ref2" /> | 4.0 x 10<sup>8</sup> | 0.22 |- | [[EGTA]]<ref name=ref11106608 /> | 1.0 x 10<sup>7</sup> | 0.07 |} キレート剤の存在下におけるカルシウムの拡散距離長さ定数λは λ = (D<sub>Ca</sub>/K<sub>on</sub>B)<sup>0.5</sup> で与えられる。ここでD<sub>Ca</sub>は細胞質内におけるカルシウムの[[wikipedia:ja:拡散定数|拡散定数]](220 μm<sup>2</sup>/s)<ref name="ref2"><pubmed>9278532</pubmed></ref>、Bはキレート剤の濃度に相当する。この式から算定されるカルシウムドメインのλは図のようになる。例えば、細胞内に1 mM EGTAが存在すると起点から105 nm離れた位置におけるカルシウム濃度は起点濃度の1/e (37%)となる。同様に、細胞内に1 mM BAPTAが存在する場合のカルシウム拡散の長さ定数は23 nmと算定される(図)。したがって、一定濃度のEGTAまたはBAPTAを細胞内に注入し、それによるカルシウム依存性機能の抑制率を測定することによって、この機能に関わるカルシウムドメインのサイズを推定することができる。 ==マイクロドメインとナノドメイン == 便宜上、カルシウムドメインのサイズが10-20 nm以下のものを[[ナノドメイン]]、100-200 nm以上のものを[[マイクロドメイン]]と呼び分けることが行われている<ref name=ref11106608 />。例えば、「ナノドメインカルシウムに依存する小胞開口放出」のように使われている。しかし一方「マイクロドメイン」はカルシウムドメインの総称としても使われているので注意を要する。 ==関連項目== *[[カルシウムチャネル]] *[[カルシウムキレート剤]] == 参考文献 == <references />
このページで使用されているテンプレート:
テンプレート:Box
(
ソースを閲覧
)
カルシウムドメイン
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
日本語
表示
閲覧
履歴表示
その他
検索
案内
索引
脳科学辞典について
最近完成した項目
編集履歴
執筆にあたって
引用の仕方
著作権について
免責事項
問い合わせ
各学会編集のオンライン用語辞典
About us (in English)
Twitter (BrainScienceBot)
ツール
リンク元
関連ページの更新状況
特別ページ
ページ情報
他のプロジェクト