エンハンサーRNAのソースを表示
←
エンハンサーRNA
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
小西理予1、河岡慎平1,2 1京都大学 医生物学研究所 臓器連関研究チーム 2東北大学 加齢医学研究所 生体情報解析分野 英:enhancer RNA<br> 英略語:eRNA {{box|text= エンハンサーから転写されるRNAのことをエンハンサーRNAという。エンハンサーRNAは、エンハンサーの活性を示唆するものさしの一つとして役に立つが、その機能については不明な点が残されている。}} == エンハンサーRNAとは == [[エンハンサー]]とは標的[[遺伝子]]がいつ、どこで、どのくらい発現するかを決める非コードDNA領域の総称である<ref name=Li2016><pubmed>26948815</pubmed></ref><ref name=Sartorelli2020><pubmed>32514177</pubmed></ref><ref name=Statello2021><pubmed>33353982</pubmed></ref><ref name=TheENCODEProjectConsortium2012><pubmed>22955616</pubmed></ref> 。遺伝子が適時・適所に機能するために重要なゲノム領域として古くから盛んに研究されてきた。実際、エンハンサーの活性は状況や細胞系譜に特異的に調節されていることが多い。 ヒトゲノムには40万もの数のエンハンサーが存在すると見積もられている<ref name=Sartorelli2020><pubmed>32514177</pubmed></ref> 。エンハンサーの包括的な同定を可能にしたのは大規模シークエンス技術の発展である。例えば、H3K27ac (27番目のリジンがアセチル化されたヒストンH3) はエンハンサーの同定のためによく使われる<ref name=Li2016><pubmed>26948815</pubmed></ref><ref name=Sartorelli2020><pubmed>32514177</pubmed></ref><ref name=Statello2021><pubmed>33353982</pubmed></ref><ref name=Zhou2011><pubmed>21116306</pubmed></ref> 。クロマチン免疫沈降<ref name=Park2009><pubmed>19736561</pubmed></ref> によってH3K27acに巻き付いているDNAを精製し、その配列を大規模に決定しゲノム配列と比較することによって、H3K27acに富むゲノム領域を網羅的に同定できる<ref name=Barski2007><pubmed>17512414</pubmed></ref><ref name=Heintzman2007><pubmed>17277777</pubmed></ref> (図1)。 一般に、エンハンサーの同定には複数のヒストンマーカーや転写因子の情報を組み合わせる。興味のある領域がDNaseに対して高感受性を示すDNA領域かどうか (クロマチン構造が開いているか) を考慮することも多い。複数の方法によるエンハンサー候補領域の同定は強力な手法である一方、これらはあくまでエンハンサー「候補」領域と考えるべきで、実際に標的遺伝子の発現に貢献しているかどうかを調べるにはエンハンサー欠失などの実験が必要である。 転写活性を有するエンハンサーが存在することが体系的に報告されたのは2010年に遡る<ref name=DeSanta2010><pubmed>20485488</pubmed></ref><ref name=Kim2010><pubmed>20393465</pubmed></ref> 。実際、RNAポリメラーゼIIの結合を認めるエンハンサーが多数存在する<ref name=DeSanta2010><pubmed>20485488</pubmed></ref> 。注意すべきこととして、エンハンサーRNAは、従来のトランスクリプトーム (RNA-seq) のプロトコルではかなり検出されにくい。複数の理由があるが、そもそもの発現量が少ないことや、半減期が短いために「気がつかれにくい」RNAであったと言える。エンハンサーRNAを効率的に捉えるには、新たに転写されつつあるRNAを捕捉できるCap analysis of gene expression (CAGE) 法<ref name=Kanamori-Katayama2011><pubmed>21596820</pubmed></ref><ref name=Shiraki2003><pubmed>14663149</pubmed></ref> や、native elongating transcript (NET)-CAGE<ref name=Hirabayashi2019><pubmed>31477927</pubmed></ref> 、global run on sequencing (GRO-seq)<ref name=Core2008><pubmed> 19056941 </pubmed></ref> 、precision run-on nuclear sequencing (PRO-seq)<ref name=Mahat2016><pubmed>27442863</pubmed></ref> などの手法が必要で、ライブラリ調整における工夫によってエンハンサーRNAの捕捉効率が変わる<ref name=Hirabayashi2019><pubmed>31477927</pubmed></ref><ref name=Sartorelli2020><pubmed>32514177</pubmed></ref><ref name=TheENCODEProjectConsortium2012><pubmed>22955616</pubmed></ref> 。検出されたRNAがエンハンサー領域にマップされた場合に、これらをエンハンサーRNAと呼ぶ (図1)。 エンハンサーRNAはエンハンサーの包括的なアノテーションに役にたつ。エンハンサー制御におけるエンハンサーRNAの機能についてはさまざまな議論があり、統一的な見解に向かう途上にある。 なお、これらの手法をもってしても検出されないエンハンサーRNAが存在する可能性もある。 == 構造 == 複数の特徴を持つエンハンサーRNAが見つかっている<ref name=Koch2011><pubmed>21765417</pubmed></ref><ref name=Sartorelli2020><pubmed>32514177</pubmed></ref> (図2)。 一つが、両方向性に転写され、スプライシングを受けず、ポリアデニル化もされず、かつ不安定なエンハンサーRNAである<ref name=Kim2010><pubmed>20393465</pubmed></ref> 。これらは、転写が早期に終結した証拠であると考えられている。 もう一つが、一方向性に転写され、スプライシングとポリアデニル化をうけ、比較的安定なエンハンサーRNAである<ref name=DeSanta2010><pubmed>20485488</pubmed></ref><ref name=Gil2018><pubmed>30447999</pubmed></ref> 。長さは150塩基長未満であると見積もられている。 ヒトの場合、エンハンサーRNAは40,000から65,000種類あるという報告がある<ref name=Andersson2014><pubmed>24670763</pubmed></ref><ref name=Arner2015><pubmed>25678556</pubmed></ref> 。エンハンサーそのものの特徴を反映して、状況ないし細胞系譜に特異的に検出されるエンハンサーRNAが多いことも特徴である。 == エンハンサー活性とエンハンサーRNA == エンハンサーRNAの発現量がエンハンサー活性とよく相関することは広く知られている<ref name=Li2016><pubmed>26948815</pubmed></ref><ref name=Sartorelli2020><pubmed>32514177</pubmed></ref><ref name=Statello2021><pubmed>33353982</pubmed></ref> 。つまり、エンハンサーRNAは活性の高いエンハンサーを見つけるための有用な手がかりでありえる。前述のように、大規模シークエンスによって特徴づけられるエンハンサー領域はあくまで候補領域である。本当にそのエンハンサーに活性があるか (「アクティブな」エンハンサーであるか) は他のさまざまな実験で多角的に検証する必要がある。この検証に有用なものがエンハンサーRNAであるといえる。このように、エンハンサーRNAは、エンハンサーの活性を示唆するものさしの一つとして包括的なエンハンサー同定を助ける分子群である。 == 機能 == エンハンサーRNAそのものの機能についてはさまざまな議論がある。エンハンサーから転写が起こっていること自体に意味があるのか、エンハンサーRNAになんらかの分子機能があるのか、それともその両方なのか、これらの可能性について、活発な研究がなされている<ref name=Li2016><pubmed>26948815</pubmed></ref><ref name=Sartorelli2020><pubmed>32514177</pubmed></ref><ref name=Statello2021><pubmed>33353982</pubmed></ref> 。 エンハンサーRNAのみに介入する方法に基づく研究の数がまだ少ないため、議論には慎重を要する。例えば、ある手法で「エンハンサーRNAとエンハンサーの活性に相関がない」と観察されたとしても、その手法で当該エンハンサーに由来するエンハンサーRNAを捕捉できた確証がなければ、統一的な議論は難しい。薬剤などでエンハンサーRNAの転写を止める場合には、転写の抑制とエンハンサーRNAの不在、その両方の影響を観察することになるし、エンハンサーRNAに対するアンチセンスオリゴを使った実験であっても、アンチセンスオリゴの転写そのものへの影響を否定できないことが報告されている<ref name=Lai2020><pubmed>31924447</pubmed></ref><ref name=Lee2020><pubmed>31924448</pubmed></ref> 。 上記の制約に言及した上でエンハンサーRNAの機能について述べる。エンハンサーRNAがさまざまなクロマチン制御因子と結合することが報告されている<ref name=Li2016><pubmed>26948815</pubmed></ref><ref name=Sartorelli2020><pubmed>32514177</pubmed></ref><ref name=Statello2021><pubmed>33353982</pubmed></ref> 。機能的に重要なクロマチン制御因子との結合を通して、これらのクロマチン制御因子そのものの生化学的な機能に影響したり、クロマチン制御因子を必要な場所にリクルートしたり、クロマチン制御因子が局在するクロマチン上の反応場の性質を変化させたりする可能性がある。これらの現象を通して、エンハンサーとプロモーターの相互作用 (ルーピング) を補助する可能性も指摘されている<ref name=Matharu2015><pubmed>26632825</pubmed></ref> 。 一方で、最新のイメージング技術を駆使した研究により、エンハンサー領域からの活発な転写が転写部位への転写因子群のリクルートを阻害するという報告<ref name=Hamamoto2023><pubmed>36805453</pubmed></ref> もなされており、エンハンサーRNAの機能が場面場面で異なる可能性も高い。 転写はそもそも極めて複雑な生化学反応である。エンハンサーRNAが転写のどこにどのように作用しているか、という議論をする際には、議論の対象となる実験の性格や解像度、転写のどの部分を切り取って観察しているのか、などの事前情報を正確に把握することが必要である。 == 参考文献 ==
このページで使用されているテンプレート:
テンプレート:Box
(
ソースを閲覧
)
エンハンサーRNA
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
日本語
表示
閲覧
履歴表示
その他
検索
案内
索引
脳科学辞典について
最近完成した項目
編集履歴
執筆にあたって
引用の仕方
著作権について
免責事項
問い合わせ
各学会編集のオンライン用語辞典
About us (in English)
Twitter (BrainScienceBot)
ツール
リンク元
関連ページの更新状況
特別ページ
ページ情報
他のプロジェクト