ERMタンパク質のソースを表示
←
ERMタンパク質
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
<div align="right"> <font size="+1">[https://researchmap.jp/7000029378 川口 高徳]</font><br> ''明海大学歯学部 病態診断治療学講座薬理学分野''<br> <font size="+1">[https://researchmap.jp/read0048380 浅野 真司]</font><br> ''立命館大学薬学部 分子生理学研究室''<br> DOI:<selfdoi /> 原稿受付日:2025年6月18日 原稿完成日:2025年8月29日<br> 担当編集委員:[http://researchmap.jp/wadancnp 和田 圭司](国立研究開発法人国立精神・神経医療研究センター) </div> 英:ERM proteins {{box|text= ERMタンパク質は、エズリン、ラディキシン、モエシンおよびマーリンで構成される分子量70~75 kDaのアクチン細胞骨格関連タンパク質群である。N末端領域に約300アミノ酸残基から構成されるFERMドメインを、C末端領域にアクチン細胞骨格との結合ドメインをもつ。主に細胞の頂端領域に局在し、細胞膜のタンパク質とアクチン細胞骨格との間でのクロスリンカーとして、また、細胞骨格ダイナミクスを制御するRhoファミリー低分子量Gタンパク質の調節因子として、さらにシグナル伝達タンパク質の足場タンパク質としての機能を担う。さまざまながん細胞種の浸潤や転移にも関与する。どのERMタンパク質が発現するかは細胞、組織によって異なるが、神経組織では、神経細胞の神経突起の成長円錐の形成や、アストロサイトのシナプス近傍の微細な突起であるperisynaptic astrocyte process (PAP) 構造の形成、ミクログリアの細胞遊走や貪食、シュワン細胞の髄鞘の形成など、広く神経組織の構造形成や機能に関わる。}} == ERMタンパク質とは == [[ファイル:Asano ERM proteins Fig1.png|サムネイル|'''図1. ERMタンパク質の構造'''<br>N末端に3つのサブドメイン (F<sub>1</sub>-F<sub>3</sub>) からなるFERMドメイン、C末端にアクチン結合ドメイン、中央にαヘリックス構造をもつ。アクチン結合ドメイン内に示した赤い星印は、活性化に重要なリン酸化部位であるエズリン, ラディキシン, モエシンのThr残基およびマーリンのSer残基を表す (表記した数字は、マウスERMタンパク質のアミノ酸番号を示す)。本文中で紹介したシグナル伝達に関わるTyr145, Tyr353, Tyr477を白い星印で示す。]] ERMタンパク質は、[[エズリン]]、[[ラディキシン]]、[[モエシン]]および[[マーリン]]からなる[[細胞骨格]]関連タンパク質群である。[[細胞膜]]のタンパク質と[[アクチン]]細胞骨格との間でクロスリンカーとして細胞の[[頂端膜]]の構造を維持し、膜タンパク質の機能発現に関与するタンパク質として見出された。エズリンは[[ニワトリ]]の[[腸管]][[上皮]]の[[刷子縁]]に存在する[[微絨毛]]中のタンパク質として<ref name=Bretscher1983><pubmed>6885906</pubmed></ref>、モエシンは[[ウシ]]の[[子宮]]の[[ミクロソーム]]から[[ヘパリン]]と結合するタンパク質として<ref name=Lankes1988><pubmed>3046603</pubmed></ref>、ラディキシンは[[ラット]]の[[肝]]細胞の[[接着結合]]から単離された<ref name=Tsukita1989><pubmed>2500445</pubmed></ref>。また、マーリンは[[神経線維腫症II型]] ([[neurofibromatosis type 2]])の原因遺伝子産物([[NF2]])として見出された<ref name=Trofatter1993><pubmed>8453669</pubmed></ref><ref name=Tikoo1994><pubmed>8089100</pubmed></ref>。 [[ファイル:Asano ERM proteins Fig2.png|サムネイル|'''図2. ERMタンパク質のリン酸化と、膜タンパク質およびアクチン細胞骨格との結合'''<br>N末端のFERMドメイン(赤〇)とC末端領域(青色)が相互作用し、アクチン細胞骨格と結合不能な「閉じた」不活性型構造をとる。FERMドメインのF3部位がPIP2に結合し、PKCやLOK、SLK、RhoキナーゼによってC末端ドメインのThr残基 (マーリンはSer残基) がリン酸化され (赤い星印)、「開いた」活性型構造となる。ERMタンパク質は単一の膜貫通領域をもつ細胞接着タンパク質と直接に (図左)、あるいは膜輸送体や受容体と直接または間接的に結合する (図右では足場タンパク質であるNHERFを介した間接的結合を示す)。]] == 構造 == N末端およびC末端領域で高いアミノ酸配列相同性を示す。N末端には約300アミノ酸残基から構成される[[FERMドメイン]]をもち、3つのサブドメイン (F<sub>1</sub>, F<sub>2</sub>, F<sub>3</sub>) からなる<ref name=Edwards2001><pubmed>11401550</pubmed></ref><ref name=Smith2003><pubmed>12429733</pubmed></ref>。FERMドメインは、[[膜タンパク質]]<ref name=Kawaguchi2017><pubmed>28381792</pubmed></ref>や[[足場タンパク質]]<ref name=Reczek1997><pubmed>9314537</pubmed></ref><ref name=Takeda2003><pubmed>14712354</pubmed></ref>、[[Rhoファミリー低分子量Gタンパク質]]調節に関わるタンパク質<ref name=Takahashi1997><pubmed>9287351</pubmed></ref><ref name=Takahashi1998><pubmed>9681826</pubmed></ref>や、膜[[リン脂質]]に含まれる[[ホスファチジルイノシトール4,5-二リン酸]] ([[PIP2]]) <ref name=Niggli1995><pubmed>7498535</pubmed></ref><ref name=Barret2000><pubmed>11086008</pubmed></ref>などと結合する。一方、エズリン、ラディキシン、モエシン のC末端領域では、特に34アミノ酸残基がファミリー間で高度に保存されており、アクチン細胞骨格と結合する。マーリンではこの部分での相同性が低い<ref name=Turunen1994><pubmed>8089177</pubmed></ref>。これらN末端とC末端のドメインは[[αヘリックス]]構造によって接続されている<ref name=Kawaguchi2022><pubmed>35328667</pubmed></ref> ('''図1''')。 おもにC末端ドメインの[[リン酸化]]によって活性が制御される。[[脱リン酸化]]状態では、N末端のFERMドメインとC末端ドメインとが相互作用し、C末端ドメインに存在するアクチン結合部位がマスクされ、アクチン線維と結合できない「閉じた」不活性型となる<ref name=Kawaguchi2017><pubmed>28381792</pubmed></ref>。FERMドメインにPIP2が結合し<ref name=Barret2000 /> [14]、続いてC末端ドメインに存在する[[トレオニン]]あるいは[[セリン]]残基 ([[マウス]]でエズリンのThr567、ラディキシンのThr564、モエシンのThr558、マーリンのSer518) が[[Lymphocyte-Oriented Kinase]] ([[LOK]]) や[[タンパク質リン酸化酵素C]] ([[protein kinase C]], [[PKC]])、[[STE20様タンパク質リン酸化酵素]] ([[SLK]])、[[Rhoキナーゼ]]によってリン酸化されることでFERMドメインとC末端ドメインの間の結合が解離し、「開かれた」活性型構造となる<ref name=Kawaguchi2017 /><ref name=Hirao1996><pubmed>8858161</pubmed></ref><ref name=Viswanatha2012><pubmed>23209304</pubmed></ref><ref name=Zaman2021><pubmed>33836044</pubmed></ref> ('''図2''')。後述するように、ERMタンパク質には、これ以外にも多数のリン酸化部位が存在し、リン酸化を受けてシグナル伝達などにかかわる。 == 発現== === 脳、神経系組織 === どのERMタンパク質が発現するかは細胞種や発生段階によって異なる。部位や発生過程における発現の違いが、各ERMタンパク質の生体内での役割の違いに繋がると考えられる。 成体[[脳]]ではエズリンはおもに[[アストロサイト]]や[[上衣細胞]]に発現が見られ、アストロサイトでは主に[[シナプス周囲アストロサイト突起]](perisynaptic astrocytic process, PAP)構造に集積する<ref name=Derouiche2001><pubmed>11746770</pubmed></ref>。 ラディキシンは、脳全体で[[Olig2]]陽性細胞に発現する<ref name=Persson2013a><pubmed>23440885</pubmed></ref>。アストロサイトのPAP構造にも見られる<ref name=Derouiche2001 />。また、脳卒中の[[梗塞]]周辺組織に見られる活性化[[ミクログリア]]にはラディキシンが高発現する<ref name=Persson2013a />。 モエシンはおもにミクログリアや[[血管内皮]]細胞に発現が見られる<ref name=Johnson2002><pubmed>12111362</pubmed></ref>。 マーリンは、[[シュワン細胞]]のほか、[[神経細胞]]<ref name=Gronholm2003><pubmed>12896975</pubmed></ref>、アストロサイトや[[オリゴデンドロサイト]]で発現が見られる<ref name=Toledo2018><pubmed>29715273</pubmed></ref>。 [[海馬]][[歯状回]]の[[顆粒細胞]]層下帯と[[側脳室]]周囲の[[脳室下帯]] (SVZ) は、成体における[[神経新生]]部位である。このうち脳室下帯で産生された前駆細胞は[[神経芽細胞]]に分化して、[[吻側移動経路]] ([[rostral migration stream]], [[RMS]])を[[嗅球]]まで移動して神経回路に編入される。ここではラディキシンは、吻側移動経路の神経芽細胞と[[オリゴデンドロサイト前駆細胞]]に発現する<ref name=Persson2010><pubmed>20109539</pubmed></ref>。ラディキシンを特異的に阻害すると、細胞骨格との相互作用が失われて神経芽細胞の移動は傷害される<ref name=Persson2013a /><ref name=Persson2013b><pubmed>24065889</pubmed></ref>。一方、エズリンは神経芽細胞には見られず、吻側移動経路を取り囲むアストロサイトに発現する<ref name=Cleary2006><pubmed>16996217</pubmed></ref>。 成体脳とは異なり、培養海馬[[錐体神経細胞]]には、エズリン、ラディキシン、モエシンが発現する。後述するようにラディキシンおよびモエシンは、[[成長円錐]]の形成や伸長に関わる<ref name=Paglini1998><pubmed>9786954</pubmed></ref>。 {| class="wikitable" |+ '''表1. ERMタンパク質の中枢神経系における発現''' ! colspan="2" |発現部位 !! タンパク質 !! 文献 |- | rowspan="6" | in vivo (成体) | アストロサイト || エズリン, ラディキシン, マーリン || <ref name=Hirata2012><pubmed>22875842</pubmed></ref><ref name=Johnson2002><pubmed>12111362</pubmed></ref> |- | ミクログリア || ラディキシン, モエシン || <ref name=Kawaguchi2018><pubmed>29541861</pubmed></ref><ref name=Derouiche2001><pubmed>11746770</pubmed></ref> |- | オリゴデンドロサイト || マーリン || <ref name=Johnson2002><pubmed>12111362</pubmed></ref> |- | 神経細胞 || マーリン || <ref name=Persson2013a><pubmed>23440885</pubmed></ref> |- | 上衣細胞 || エズリン || <ref name=Hirata2012><pubmed>22875842</pubmed></ref> |- | 血管内皮細胞 || モエシン || <ref name=Derouiche2001><pubmed>11746770</pubmed></ref> |- | rowspan="3" | in vivo (分化過程) | 神経芽細胞 (吻側移動経路) || ラディキシン || <ref name=Gronholm2003><pubmed>12896975</pubmed></ref><ref name=Toledo2018><pubmed>29715273</pubmed></ref> |- | オリゴデンドロサイト前駆細胞 (吻側移動経路) || ラディキシン || <ref name=Gronholm2003><pubmed>12896975</pubmed></ref> |- | アストロサイト || エズリン || <ref name=Persson2010><pubmed>20109539</pubmed></ref> |- | in vitro||海馬錐体初代培養神経細胞 || エズリン, ラディキシン, モエシン || <ref name=Persson2013b><pubmed>24065889</pubmed></ref> |} ===その他の組織=== エズリンは、[[胃]]の[[壁細胞]]の[[管腔側膜]]や、[[小腸]]、[[大腸]]の刷子縁膜で高発現しており、[[腎臓]]の[[近位尿細管]]の刷子縁膜や[[糸球体]]、[[肺]]や[[気管支]]などの[[呼吸上皮]]にも発現する<ref name=Bretscher1983 /><ref name=Hanzel1991><pubmed>1831124</pubmed></ref><ref name=Yoshida2016><pubmed>27108882</pubmed></ref><ref name=Hugo1998><pubmed>9853258</pubmed></ref><ref name=Hatano2013><pubmed>22895514</pubmed></ref><ref name=Laoukili2001><pubmed>11748265</pubmed></ref>。 ラディキシンは、肝臓の管腔側膜で高発現しており、腎臓の糸球体にも発現が見られる<ref name=Tsukita1989 /><ref name=Hugo1996><pubmed>8647942</pubmed></ref>。 モエシンは、血管内皮細胞、[[リンパ球]]、[[T細胞]]、[[B細胞]]や[[マスト細胞]]などで高発現するほか、[[肺]]や[[脾臓]]、腎臓の[[ヘンレループの太い上行脚]]および糸球体[[内皮細胞]]にも発現が見られる<ref name=Berryman1993><pubmed>8227193</pubmed></ref><ref name=Schwartz1995><pubmed>7588875</pubmed></ref><ref name=Hirata2012><pubmed>22875842</pubmed></ref><ref name=Kawaguchi2018><pubmed>29541861</pubmed></ref>。 ERMタンパク質は[[微絨毛]]や[[糸状仮足]]における皮質アクチン線維と結合することで、これらの構造を維持し、細胞内において極性をもって分布する。特に、上皮細胞の頂端部に局在することで、後述する膜タンパク質の局在制御やRhoファミリー低分子量Gタンパク質の活性調節を行うほか、シグナル伝達関連タンパク質の制御をはじめとする生理機能を実現する。 == 分子機能 == さまざまな細胞膜タンパク質とアクチン細胞骨格間のクロスリンカーとして、[[Rhoファミリー低分子量Gタンパク質]]の調節因子として、また[[PI3キナーゼ]] ([[PI3K]])-[[Akt]]経路などのシグナル伝達に関連するタンパク質の足場タンパク質として働く。これらの機能はがんの[[浸潤]]・[[転移]]にも密接に関わる。 === 細胞膜タンパク質とアクチン細胞骨格間のクロスリンカー === ==== 細胞接着タンパク質との結合 ==== 単一の膜貫通領域をもつ[[細胞接着タンパク質]]とFERMドメインで直接に結合し、アクチン細胞骨格へのクロスリンカータンパク質として働く。すべてのERMタンパク質が、細胞表面で[[ヒアルロン酸]]の[[受容体]]として機能する[[CD44]]の細胞質ドメインと結合し、アクチン細胞骨格との間でクロスリンカーとして働き、がん細胞の遊走や浸潤に関連する<ref name=Tsukita1994><pubmed>7518464</pubmed></ref><ref name=Yonemura1998><pubmed>9472040</pubmed></ref>。また、エズリンは細胞間接着分子[[ICAM-1]]および[[ICAM-2]]の細胞質ドメインに結合する<ref name=Heiska1998><pubmed>9705328</pubmed></ref>。モエシンは[[CD44]]のほか細胞接着タンパク質である[[CD43]]、細胞間接着分子ICAM-2とも直接に結合する<ref name=Yonemura1998 /> ('''図2''')。 ==== 膜輸送体や受容体との結合 ==== [[膜輸送体]]とも直接に結合し、アクチン細胞骨格との相互作用を介して、頂端膜で安定に発現させる。たとえば、エズリンは、FERM ドメインで[[Na+/H+交換輸送体1|Na<sup>+</sup>/H<sup>+</sup>交換輸送体1]] ([[NHE1]]) のC末端の細胞質領域と結合する<ref name=Denker2000><pubmed>11163215</pubmed></ref>。また、がんにおける[[多剤耐性]]機構に重要な因子となる[[P糖タンパク質]] ([[P-gp]]) とも同様に結合し、P-gpの細胞膜発現と基質輸送能を高める<ref name=Luciani2002><pubmed>11781249</pubmed></ref>。ラディキシンは、[[multi-drug resistance protein 2]] ([[MRP2]])のC末端の細胞質ドメインに直接結合し、[[胆管]]への[[抱合型ビリルビン]]の分泌に関与する<ref name=Kikuchi2002><pubmed>12068294</pubmed></ref>。 モエシンは、FERMドメインで、[[Na+/K+/2Cl-共輸送体2|Na<sup>+</sup>/K<sup>+</sup>/2Cl<sup>-</sup>共輸送体2]] ([[NKCC2]]) のC末端領域と結合することで、NKCC2を頂端膜で安定に発現させる<ref name=Carmosino2012><pubmed>22708623</pubmed></ref>。 また、エズリンは、足場タンパク質を介して膜輸送体や受容体と間接的に複合体を形成する。足場タンパク質である[[Na+/H+交換輸送体制御因子1|Na<sup>+</sup>/H<sup>+</sup>交換輸送体制御因子1]] ([[NHERF1]]) および2は、2つの[[PDZドメイン|PDZ]] ([[PSD-95]]、[[Discs-large]]、[[ZO-1]]) ドメインをもつ一方、C末端でERMタンパク質のFERMドメインに結合する<ref name=Reczek1997 ./><ref name=Takeda2003 />。NHERF1のPDZドメインは、[[クロライドチャネル]]である[[嚢胞性線維症膜コンダクタンス制御因子]] ([[CFTR]])、[[Na+/H+交換輸送体3|Na<sup>+</sup>/H<sup>+</sup>交換輸送体3]] ([[NHE3]]) 、[[Na+/リン酸共輸送体2a|Na<sup>+</sup>/リン酸共輸送体2a]] ([[Npt2a]])、[[グルタミン酸輸送体]][[GLAST]]などの膜輸送体のほか、[[β2アドレナリン受容体|β<sub>2</sub>アドレナリン受容体]]([[β2AR|β<sub>2</sub>AR]])のC末端に存在するPDZ結合モチーフと結合する。その結果、膜輸送体や受容体がアクチン細胞骨格に結合して細胞膜で安定に発現する<ref name=Hatano2013 /><ref name=Short1998><pubmed>9677412</pubmed></ref><ref name=Lamprecht1998><pubmed>9792717</pubmed></ref><ref name=Lee2007><pubmed>17048262</pubmed></ref><ref name=Kawaguchi2022b><pubmed>35132996</pubmed></ref>('''図2''')。 [[ファイル:Asano ERM proteins Fig3.png|サムネイル|'''図3. ERMタンパク質によるRhoファミリー低分子量Gタンパク質活性の制御'''<br>GTP結合型のRhoファミリー低分子量Gタンパク質は活性型であり、下流のエフェクターと相互作用する。GDP結合型のRhoファミリー低分子量Gタンパク質は不活性型であり、下流のエフェクターとの親和性が大幅に低下している。Rho-GEFは、結合したGDPからGTPへの交換を誘導し、Rhoファミリー低分子量Gタンパク質を活性化する。Rho-GDIは、不活性型のGDP結合型Rhoファミリー低分子量Gタンパク質と結合し、安定化させることで活性型への変換を妨げる。ERMタンパク質はRho-GEFとFERMドメインで結合し、Rhoファミリー低分子量Gタンパク質においてGDPからGTPへの交換を促進することで活性化する (図中(a))。また、Rho-GDIともFERMドメインで結合し、Rhoファミリー低分子量Gタンパク質からのRho-GDIの解離を促進することで活性化する (図中(b))。]] === ADPリボシル化因子ファミリーGTPaseの調節 === エズリンは[[胃壁細胞]]の管腔側膜に発現する。胃壁細胞を[[ヒスタミン]]処理すると、[[cAMP依存性タンパク質リン酸化酵素]] ([[PKA]]) によってエズリンのN末端側のSer66がリン酸化を受ける。この際にエズリンは[[ADPリボシル化因子6]] ([[ADP ribosylation factor-6]], [[ARF6]]) GTPaseおよび[[ARF GTPase活性化タンパク質]]である[[ACAP4]]と結合し、胃酸分泌細胞内の[[プロトンポンプ]]を含む細管小胞と管腔側膜との融合を促して酸分泌を開始する<ref name=Ding2010><pubmed>20360010</pubmed></ref>。実際にエズリンを[[ノックダウン]]した[[マウス]]では、細管小胞と管腔側膜との融合はおこらず、胃酸の分泌が傷害される<ref name=Tamura2005><pubmed>15809309</pubmed></ref>。 === Rhoファミリー低分子量Gタンパク質の調節 === エズリンは、細胞骨格のダイナミクスを制御するRhoファミリー低分子量Gタンパク質の上流および下流の[[エフェクター]]として機能する<ref name=Ivetic2004><pubmed>15147559</pubmed></ref>。Rhoファミリー低分子量Gタンパク質は皮質アクチンの再構築を誘導し、[[フィロポディア]]、[[ラメリポディア]]といった細胞の形態変化や、遊走などの細胞運動を引き起こす。エズリンはRho関連タンパク質などに結合してRhoファミリー低分子量Gタンパク質活性を制御する一方、[[Rhoキナーゼ]]によるリン酸化によって活性化される。 ラディキシンについても、[[前立腺がん]]細胞PC3や[[乳がん]]細胞MDA-MB-231においてRhoファミリー低分子量Gタンパク質の一種である[[Rac1]]を介して細胞形態の変化や[[細胞遊走]]、細胞接着を制御する<ref name=Valderrama2012><pubmed>22467863</pubmed></ref>。ラディキシンをノックダウンすると細胞面積の増加を引き起こすが、Rac1を発現抑制すると、この細胞面積増加は抑制される。一方、恒常的に活性化したRac1は、細胞の拡散と細胞間接触における[[N-カドヘリン]]の発現増加を引き起こす<ref name=Valderrama2012 />。 ==== Rhoグアニンヌクレオチド交換因子との相互作用 ==== エズリンは、FERMドメインを介して、Rhoファミリー低分子量Gタンパク質を活性化する酵素である[[Rhoグアニンヌクレオチド交換因子]] ([[Rho-GEF]]) の1つである[[Pleckstrin Homology Domain-Containing Family G Member 6]] ([[PLEKHG6]])と結合する。腎尿細管由来のLLC-PK1細胞とA431細胞において、エズリンはPLEKHG6と結合して頂端膜へと誘導し、PLEKFG6による[[RhoG]]の活性化を介して微絨毛と[[ラッフル膜]]の形成と[[マクロピノサイトーシス]]を引き起こす<ref name=DAngelo2007><pubmed>17881735</pubmed></ref>[54]。また、エズリンはRac1のGEFである[[DOCK1]]と、[[engulfment and cell motility]] ([[ELMO]]) タンパク質、およびRac1からなる複合体と反応する。[[ゼブラフィッシュ]]の胚では、[[線毛]]の形成過程で[[基底小体]]の細胞内移動や細胞膜とのドッキングにはたらく<ref name=Epting2015><pubmed>25516973</pubmed></ref>。 ==== Rho-GDP解離阻害因子との相互作用 ==== すべてのRhoファミリーメンバーの阻害性調節因子である[[Rho-GDI]]は、不活性型であるGDP結合Rhoファミリー低分子量Gタンパク質と結合し、Rho-GDP/GDI複合体を安定化することでRhoファミリー低分子量Gタンパク質の活性化を妨げる。エズリンはFERMドメインでRho-GDIと結合し、Rho-GDP/GDI複合体の形成を妨げることでRhoファミリー低分子量Gタンパク質の活性化を補助する<ref name=Takahashi1997 /> ('''図3''')。 ==== Rho関連コイルドコイル含有キナーゼとの相互作用 ==== [[Rho関連コイルドコイル含有キナーゼ]]は、Rhoファミリー低分子量Gタンパク質の1つであるRhoAの下流エフェクターである<ref name=Leung1995><pubmed>7493923</pubmed></ref><ref name=Nakagawa1996><pubmed>8772201</pubmed></ref>。[[ミオシン軽鎖]]を直接リン酸化、[[ミオシンホスファターゼ]]を阻害することで、[[ストレスファイバー]]の集合を誘導する<ref name=Totsukawa2000><pubmed>10953004</pubmed></ref>。その一方、Rho関連コイルドコイル含有キナーゼはエズリンのC末端ドメインのThr567をリン酸化して活性化する。一方、Rho関連コイルドコイル含有キナーゼ阻害剤である[[Y27632]]はエズリンのリン酸化とアクチン細胞骨格への結合を阻害する<ref name=Quang2000><pubmed>10970850</pubmed></ref>。 === シグナル伝達タンパク質の足場タンパク質 === エズリンはリン酸化を受けて、[[肝細胞増殖因子]] (HGF)、[[上皮成長因子]] (EGF)、PI3キナーゼ(PI3K)-Akt経路などのシグナル伝達において、関連タンパク質の足場タンパク質として機能する。いくつかのシグナル伝達経路はクロストークして、細胞増殖やがんの浸潤や転移に関わる。 ==== HGF/c-Metシグナル伝達 ==== エズリンは、肝細胞増殖因子/[[c-Met]]シグナル伝達誘導性の細胞の形態変化や、がん細胞の浸潤・転移を引き起こす。HGFは[[受容体型チロシンキナーゼ]]c-Metと結合してリン酸化を引き起こす。この活性化c-Metは[[非受容体型チロシンキナーゼ]][[c-Src]]を誘導し、エズリンのTyr477をリン酸化する (Tyr477はエズリンに見られるがERMタンパク質の中では保存されていない)。リン酸化エズリンは、細胞の形態変化にかかわる非受容体型チロシンキナーゼである[[Fes]]と結合する。活性化されたFesはエズリンによってシート状の細胞間の接着部にリクルートされ、細胞の形態変化をともなう拡散・散乱をおこす<ref name=Naba2008><pubmed>18046454</pubmed></ref>。 ==== EGF/EGFRシグナル伝達 ==== ヒトの[[皮膚]]がん由来のA431細胞を上皮成長因子で処理すると、エズリンのリン酸化と共に、微絨毛様構造やラッフル膜が形成されるなど細胞表面構造の変化が観察される<ref name=Bretscher1989><pubmed>2646308</pubmed></ref>。エズリンは[[上皮成長因子受容体]]と複合体を形成する。上皮成長因子処理によってエズリンのFERMドメインのTyr145と、中央αヘリックス構造のTyr353がリン酸化を受け、上皮成長因子受容体との結合が増強される<ref name=Krieg1992><pubmed>1382070</pubmed></ref>。エズリンを欠損または阻害すると、上皮成長因子受容体のリン酸化やシグナル下流の[[Erk]]や[[STAT3]]の活性化、細胞増殖が阻害を受ける<ref name=SaygidegerKont2016><pubmed>26936397</pubmed></ref>。Tyr353のリン酸化は細胞増殖や[[上皮間葉転換]]、[[アポトーシス]]阻害にも関わる<ref name=Wang2014><pubmed>24346284</pubmed></ref>。 ==== PI3K-Akt経路 ==== エズリンは上皮成長因子のような外部シグナルを受けてTyr353がリン酸化されると、PI3Kの調節サブユニットである[[p85]]のC末端SH2ドメインと結合することでPI3Kを活性化する。PI3Kによって産生される[[ホスファチジルイノシトール3,4,5-三リン酸]]は、プロテインキナーゼであるAktを活性化し、細胞増殖を促すとともに細胞をアポトーシスから保護する<ref name=Gautreau1999><pubmed>10377409</pubmed></ref>。また、上皮間葉転換を促進する。 一方、マーリンは脳特異的GTPaseである[[PI3Kエンハンサー]]([[PIKE]]) Lに結合し、PI3K活性を阻害して細胞増殖を抑制する<ref name=Rong2004><pubmed>15598747</pubmed></ref>。 [[ファイル:Asano ERM proteins Fig4.png|サムネイル|'''図4. 成長円錐におけるガイダンス因子を受容するERMタンパク質複合体'''<br>神経軸索の誘因/反発因子として働く分泌性タンパク質Netrin-1は受容体であるDCCに結合し、PKA依存的に神経細胞発達を誘導する。ERMタンパク質はDCCと結合すると共にPKAとも結合し、タンパク質複合体を形成する。この複合体形成が、DCCを介したPKAの活性化に重要である。特にエズリン は、Netrin-1依存的にDCCと結合し、Rhoキナーゼによって自身がリン酸化を受けてアクチン細胞骨格の再構築を引き起こし、神経軸索伸長などを引き起こすと考えられる。]] == 神経での機能 == === 成長円錐の形成 === ラディキシンは神経細胞の[[成長円錐]]の形成において重要な役割を担う。たとえばニワトリの神経培養細胞の培地から[[神経成長因子]] (NGF)を除くと、成長円錐の急速な崩壊と同時にラディキシンの発現は大幅に低下する。一方、神経成長因子を再添加すると成長円錐が再形成されると同時にラディキシンの成長円錐での再局在化が引き起こされる<ref name=GonzalezAgosti1996><pubmed>8769724</pubmed></ref>。 また、海馬神経細胞の初代培養における[[アンチセンスオリゴヌクレオチド]]を用いたERMファミリーの発現抑制実験では、ラディキシンとモエシンを二重発現抑制すると、成長円錐の劇的な減少や放射状条線の消失、糸状仮足数の減少および長さの増加など、成長円錐の形成異常が認められる。他方、エズリンとラディキシン、エズリンとモエシンを二重発現抑制しても、成長円錐の形態や大きさや糸状仮足の数、細胞骨格に変化は見られない<ref name=Paglini1998 />。タイムラプス[[Video Enhanced Contrast-微分干渉顕微鏡]] ([[VEC-DIC顕微鏡]])で成長円錐の拡大を解析すると、ラディキシンとモエシンを二重発現抑制すると、軸索伸長速度の劇的な遅延が見られ、成長円錐の拡大が傷害される<ref name=Paglini1998 />。 また、神経軸索の誘因/反発因子として働く分泌性タンパク質Netrin-1は、受容体である[[deleted in colorectal cancer]] ([[DCC]]) に結合して、[[cAMP依存性タンパク質リン酸化酵素]] ([[cAMP-dependent protein kinase]], [[protein kinase A]], [[PKA]])依存的に神経細胞発達に関与する。PKAの足場となるAキナーゼアンカータンパク質 (AKAP)機能を欠損したラディキシン、エズリンとモエシンの変異体を導入すると、成長円錐において特徴的なラメラ構造やラメリポディアが消失する。これにラディキシンを発現させると成長円錐の形態を回復させる<ref name=Deming2015><pubmed>25575591</pubmed></ref>('''図4''')。 === 神経突起形成 === エズリンは[[ネトリン-1]]依存的にDCCと結合し、自らがRhoキナーゼによってリン酸化を受けて、軸索の伸長を活性化する ('''図4''')。初代培養神経細胞においてエズリンの機能を欠損させると、突起伸長は阻害を受ける<ref name=AntoineBertrand2011><pubmed>21849478</pubmed></ref>。 また、エズリンの発現が野生型マウスの5%以下まで抑制されたノックダウンマウス (Vil2kd/kd マウス) 胚由来の初代培養神経細胞では、野生型マウスと比較して神経突起の形成障害が見られる。Vil2kd/kd マウス神経細胞では、RhoA活性の上昇およびミオシン軽鎖2 (MLC2)のリン酸化が認められ、[[ミオシンII]]やROCKを阻害すると神経細胞の神経突起形成が回復する<ref name=Matsumoto2014><pubmed>25144196</pubmed></ref>。 === アストロサイトPAP構造とグルタミン酸輸送 === アストロサイトにはシナプス周囲アストロサイト突起 (perisynaptic astrocytic process, PAP)と呼ばれるシナプス近傍の微細な突起が見られ、全細胞表面の70-80%を占め、グリアと神経細胞の相互作用に重要な膜タンパク質が局在する<ref name=Derouiche2001 /><ref name=Derouiche2019><pubmed>31382374</pubmed></ref>。PAPにはエズリンおよびラディキシンが高発現しており、特に活性型であるC末端リン酸化型エズリンが集積する<ref name=Derouiche2019 /><ref name=Lavialle2011><pubmed>21753079</pubmed></ref>。エズリンは足場タンパク質であるNHERF1を介して、アストロサイトの細胞骨格タンパク質である[[グリア線維性酸性タンパク質]] ([[GFAP]])や、[[グルタミン酸-アスパラギン酸トランスポーター]]であるGLASTと結合し、PAPを含むアストロサイト突起で共局在する<ref name=Lee2007 />。エズリンは、NHERF1-GLAST複合体とアクチン細胞骨格の間のリンカータンパク質として機能し、GLASTのPAPでの発現を安定化し、グルタミン酸輸送能を向上させることによってグルタミン酸による脳障害に対する保護に働く<ref name=Sullivan2007><pubmed>17684014</pubmed></ref>。 === ミクログリア活性化=== モエシンは[[ミクログリア]]に発現する。マウスの初代培養ミクログリアをモエシンのリン酸化を阻害する[[NSC305787]]で処理すると、リン酸化レベルの低下に対応して[[UDP]]誘導性の食作用や[[ADP]]誘導性の遊走、リポポリサッカライド (LPS)誘導性の[[TNF-α]]分泌が阻害される<ref name=Okazaki2020a>'''Okazaki, T., Kawaguchi, K., Hirao, T., & Asano, S. (2020).''' Moesin is involved in migration and phagocytosis activities of primary microglia. BPB Reports. 3(6), 185-9. [https://search.worldcat.org/ja/title/9657265683 WorldCat][https://www.jstage.jst.go.jp/article/bpbreports/3/6/3_185/_html/-char/en DOI] </ref>。また、モエシンノックアウトマウス由来の初代培養ミクログリアではADP誘導性の遊走活性の低下やUDP感受性の貪食能の低下が観察されることから、モエシンはミクログリアの遊走や貪食に重要な役割を担うと考えられる<ref name=Okazaki2020b><pubmed>33129281</pubmed></ref>。 === シュワン細胞における髄鞘形成 === エズリンは[[シュワン細胞]]の微絨毛構造に発現する。エズリンを高発現する突起部分ではミエリンが欠如しており、この部位が[[ランヴィエ絞輪]]の形成に関与するものと見られる<ref name=MelendezVasquez2001><pubmed>11158623</pubmed></ref>。 マーリンもまたシュワン細胞の膜ドメインに高発現する<ref name=Scherer1996><pubmed>8951671</pubmed></ref>。末梢神経系では損傷後に軸索再生と再髄鞘形成が起きるが、シュワン細胞特異的マーリン欠損マウスではこれらが傷害される。マーリンは、細胞増殖とアポトーシスを通じて器官のサイズを制御する[[Hippo経路]]の[[転写因子]]である[[Yes-associated protein]] ([[YAP]]) と結合することで[[髄鞘]]形成に関与し、機能的な神経修復において重要な働きを担う<ref name=Mindos2017><pubmed>28137778</pubmed></ref>。 == 疾患との関連 == === 自閉症スペクトラム === モエシンは[[自閉症スペクトラム]] ([[ASD]]) に関わる因子の一つであることが知られている。自閉症スペクトラムにかかわる[[long noncoding RNA]] ([[lncRNA]]) の一つとして見出された[[moesin pseudogene 1 antisense]] ([[MSNP1AS]]) は、自閉症スペクトラム患者の[[大脳皮質]]ではコントロール患者と比較して12倍も発現が増加する。MSNP1ASはモエシンのRNAと二本鎖を形成し、モエシンの発現を阻害する<ref name=Kerin2012><pubmed>22491950</pubmed></ref>。ヒト培養海馬神経細胞にMSNP1ASを過剰発現させるとRhoAの活性化とPI3K/Aktの活性化阻害が見られ、神経突起の数と長さの減少が観察される。さらに、自閉症のモデルである[[BTBRマウス]]の海馬に[[レンチウイルス]]を用いてモエシンのcDNAを注入して行動観察を行ったところ、社会的な相互作用が改善され、[[反復行動]]、[[不安行動]]の減少が見られた<ref name=Luo2020><pubmed>33215882</pubmed></ref>。[[オープンフィールドテスト]]の結果、モエシンノックアウトマウスは野生型マウスと比較して不安様行動が見られることが報告されている<ref name=Cai2025><pubmed>39885788</pubmed></ref>。 === 癌 === エズリンはがん細胞の浸潤や転移に関連し、一方、マーリンは腫瘍増殖抑制に関わる。 ==== エズリンと癌 ==== 一般にエズリンの発現が高い程、予後が悪く生存率は低下する。その原因の一つとしてがんの転移能が上昇することがある。エズリンが転移に関わるメカニズムの例として、CD44とアクチン細胞骨格とのクロスリンクや、EGF/EGFRを介した上皮間葉転換が挙げられる。CD44v6 (変異型エクソンv6配列を含むCD44アイソフォーム) はHGF/c-Metの共受容体としてエズリンと結合し、アクチン細胞骨格に繋留されることでがん細胞の浸潤を促進する<ref name=OrianRousseau2002><pubmed>12464636</pubmed></ref>。上皮間葉転換には、EGF/EGFRシグナル伝達が関与する。舌[[扁平上皮癌]]において、EGFがエズリンのTyr353をリン酸化し、Aktおよび[[NF-κB]]の活性化を介して上皮間葉転換とがん転移を誘導する<ref name=Wang2014 />。 ==== マーリンの抗腫瘍作用 ==== がん抑制遺伝子であるnf2はマーリンをコードする。nf2の不活化は、両側性に発生する前庭神経鞘腫および髄膜腫や脳室上衣腫などの脳腫瘍を特徴とする優性遺伝疾患である神経線維腫症II型を引き起こす<ref name=Asthagiri2009><pubmed>19476995</pubmed></ref>。神経線維腫症II型は、特有の疾患として両側性[[前庭神経鞘腫]] ([[第VIII脳神経]]に発生する腫瘍) を、一般的には脳神経や[[後根神経節]]、末梢神経にも神経鞘種を引き起こす。マーリンは、PI3Kや[[Raf]]/[[ERK]]、[[Wnt]]/[[β-カテニン]]、受容体型チロシンキナーゼ、[[mTOR]]、[[Hippo経路]]などさまざまなシグナル伝達経路を阻害することで腫瘍抑制効果を示す<ref name=Vlashi2024><pubmed>38967126</pubmed></ref>。 ==関連項目== *[[アクチン]] *[[Rhoファミリー低分子量Gタンパク質]] ==参考文献==
このページで使用されているテンプレート:
テンプレート:Box
(
ソースを閲覧
)
ERMタンパク質
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
日本語
表示
閲覧
履歴表示
その他
検索
案内
索引
脳科学辞典について
最近完成した項目
編集履歴
執筆にあたって
引用の仕方
著作権について
免責事項
問い合わせ
各学会編集のオンライン用語辞典
About us (in English)
Twitter (BrainScienceBot)
ツール
リンク元
関連ページの更新状況
特別ページ
ページ情報
他のプロジェクト