Genisteinのソースを表示
←
Genistein
ナビゲーションに移動
検索に移動
あなたには「このページの編集」を行う権限がありません。理由は以下の通りです:
この操作は、次のグループに属する利用者のみが実行できます:
登録利用者
。
このページのソースの閲覧やコピーができます。
{{Distinguish|Genistin}} {{multiple issues| {{Primary sources|date=February 2020}} {{More medical citations needed|date=June 2012}} }} {{Chembox | Watchedfields = changed | verifiedrevid = 443833756 | ImageFile = Genistein.svg | ImageClass = skin-invert-image | ImageSize = 220px | ImageFile1 = Genistein-3D-balls.png | ImageSize1 = 220 | ImageAlt1 = Genistein molecule | IUPACName = 4′,5,7-Trihydroxyisoflavone | SystematicName = 5,7-Dihydroxy-3-(4-hydroxyphenyl)-4''H''-1-benzopyran-4-one | OtherNames = | Section1 = {{Chembox Identifiers | IUPHAR_ligand = 2826 | ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}} | ChemSpiderID = 4444448 | UNII_Ref = {{fdacite|correct|FDA}} | UNII = DH2M523P0H | KEGG_Ref = {{keggcite|correct|kegg}} | KEGG = D11680 | KEGG2 = C06563 | InChI = 1/C15H10O5/c16-9-3-1-8(2-4-9)11-7-20-13-6-10(17)5-12(18)14(13)15(11)19/h1-7,16-18H | InChIKey = TZBJGXHYKVUXJN-UHFFFAOYAH | ChEMBL_Ref = {{ebicite|correct|EBI}} | ChEMBL = 44 | StdInChI_Ref = {{stdinchicite|correct|chemspider}} | StdInChI = 1S/C15H10O5/c16-9-3-1-8(2-4-9)11-7-20-13-6-10(17)5-12(18)14(13)15(11)19/h1-7,16-18H | StdInChIKey_Ref = {{stdinchicite|correct|chemspider}} | StdInChIKey = TZBJGXHYKVUXJN-UHFFFAOYSA-N | CASNo_Ref = {{cascite|correct|CAS}} | CASNo = 446-72-0 | PubChem = 5280961 | DrugBank_Ref = {{drugbankcite|correct|drugbank}} | DrugBank = DB01645 | ChEBI_Ref = {{ebicite|correct|EBI}} | ChEBI = 28088 | EINECS = 207-174-9 | Beilstein = 263823 | SMILES = Oc1ccc(cc1)C\3=C\Oc2cc(O)cc(O)c2C/3=O }} | Section2 = {{Chembox Properties | C=15 | H=10 | O=5 | Appearance = | Density = | MeltingPt = | BoilingPt = | Solubility = }} | Section3 = {{Chembox Hazards | MainHazards = | FlashPt = | AutoignitionPt = }} }} '''Genistein''' (C<sub>15</sub>H<sub>10</sub>O<sub>5</sub>) is a naturally occurring compound that structurally belongs to a class of compounds known as [[isoflavones]]. It is described as an [[angiogenesis inhibitor]] and a [[phytoestrogen]].<ref>{{Citation |last1=Sail |first1=Vibhavari |title=Chapter Eighteen - Notch Pathway Modulators as Anticancer Chemotherapeutics |date=2012-01-01 |url=http://www.sciencedirect.com/science/article/pii/B9780123964922000187 |volume=47 |pages=267–280 |editor-last=Desai |editor-first=Manoj C. |series=Annual Reports in Medicinal Chemistry |publisher=Academic Press |language=en |access-date=2020-09-14 |last2=Hadden |first2=M. Kyle |chapter=Notch Pathway Modulators as Anticancer Chemotherapeutics |doi=10.1016/B978-0-12-396492-2.00018-7|isbn=978-0-12-396492-2 }}</ref> It was first isolated in 1899 from the [[Genista tinctoria|dyer's broom, ''Genista tinctoria'']]; hence, the chemical name. The compound structure was established in 1926, when it was found to be identical with that of '''prunetol'''. It was chemically synthesized in 1928.<ref>{{cite journal |last1=Walter |first1=E. D. |title=Genistin (an Isoflavone Glucoside) and its Aglucone, Genistein, from Soybeans |journal=Journal of the American Chemical Society |volume=63 |issue=12 |pages=3273–76 |year=1941 |doi=10.1021/ja01857a013|bibcode=1941JAChS..63.3273W }}</ref> It has been shown to be the primary secondary metabolite of the ''[[Trifolium]]'' species and ''[[Glycine max]]''.<ref>{{Cite journal |last1=Popiołkiewicz |first1=Joanna |last2=Polkowski |first2=Krzysztof |last3=Skierski |first3=Janusz S. |last4=Mazurek |first4=Aleksander P. |date=November 2005 |title=In vitro toxicity evaluation in the development of new anticancer drugs—genistein glycosides |url=http://dx.doi.org/10.1016/j.canlet.2005.01.014 |journal=Cancer Letters |volume=229 |issue=1 |pages=67–75 |doi=10.1016/j.canlet.2005.01.014 |pmid=16157220 |issn=0304-3835}}</ref> ==Natural occurrences== Isoflavones such as genistein and [[daidzein]] are found in a number of plants including [[lupin]], [[fava bean]]s, [[soybean]]s, [[kudzu]], and [[psoralea]] being the primary food source,<ref>{{cite journal |last1=Coward |first1=Lori |last2=Barnes |first2=Neil C. |last3=Setchell |first3=Kenneth D. R. |last4=Barnes |first4=Stephen |year=1993 |title=Genistein, daidzein, and their β-glycoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets |journal=Journal of Agricultural and Food Chemistry |volume=41 |issue=11 |pages=1961–7 |doi=10.1021/jf00035a027|bibcode=1993JAFC...41.1961C }}</ref><ref>{{cite journal |last1=Kaufman |first1=Peter B. |last2=Duke |first2=James A. |last3=Brielmann |first3=Harry |last4=Boik |first4=John |last5=Hoyt |first5=James E. |year=1997 |title=A Comparative Survey of Leguminous Plants as Sources of the Isoflavones, Genistein and Daidzein: Implications for Human Nutrition and Health |journal=The Journal of Alternative and Complementary Medicine |volume=3 |issue=1 |pages=7–12 |pmid=9395689 |doi=10.1089/acm.1997.3.7 |citeseerx=10.1.1.320.9747}}</ref> also in the [[medicinal plant]]s, ''[[Flemingia vestita]]''<ref name="Rao">{{cite journal |last1=Rao |first1=H. S. P. |last2=Reddy |first2=K. S. |year=1991 |title=Isoflavones from ''Flemingia vestita'' |journal=Fitoterapia |volume=62 |issue=5 |pages=458}}</ref> and ''[[flemingia macrophylla|F. macrophylla]]'',<ref>{{cite journal |last1=Rao |first1=K.Nageswara |last2=Srimannarayana |first2=G. |year=1983 |title=Fleminone, a flavanone from the stems of ''Flemingia macrophylla'' |journal=Phytochemistry |volume=22 |issue=10 |pages=2287–90 |doi=10.1016/S0031-9422(00)80163-6|bibcode=1983PChem..22.2287R }}</ref><ref>{{cite journal |last1=Wang |first1=Bor-Sen |last2=Juang |first2=Lih-Jeng |last3=Yang |first3=Jeng-Jer |last4=Chen |first4=Li-Ying |last5=Tai |first5=Huo-Mu |last6=Huang |first6=Ming-Hsing |year=2012 |title=Antioxidant and Antityrosinase Activity of ''Flemingia macrophylla'' and ''Glycine tomentella'' Roots |journal=Evidence-Based Complementary and Alternative Medicine |volume=2012 |pages=1–7 |doi=10.1155/2012/431081 |pmid=22997529 |pmc=3444970 |doi-access=free}}</ref> and [[coffee]].<ref>{{cite journal |last1=Alves |first1=Rita C. |last2=Almeida |first2=Ivone M. C. |last3=Casal |first3=Susana |last4=Oliveira |first4=M. Beatriz P. P. |year=2010 |title=Isoflavones in Coffee: Influence of Species, Roast Degree, and Brewing Method |journal=Journal of Agricultural and Food Chemistry |volume=58 |issue=5 |pages=3002–7 |pmid=20131840 |doi=10.1021/jf9039205|bibcode=2010JAFC...58.3002A }}</ref> It can also be found in ''[[Maackia amurensis]]'' cell cultures.<ref>{{cite journal |last1=Fedoreyev |first1=S.A |last2=Pokushalova |first2=T.V |last3=Veselova |first3=M.V |last4=Glebko |first4=L.I |last5=Kulesh |first5=N.I |last6=Muzarok |first6=T.I |last7=Seletskaya |first7=L.D |last8=Bulgakov |first8=V.P |last9=Zhuravlev |first9=Yu.N |year=2000 |title=Isoflavonoid production by callus cultures of Maackia amurensis |journal=Fitoterapia |volume=71 |issue=4 |pages=365–72 |pmid=10925005 |doi=10.1016/S0367-326X(00)00129-5}}</ref> ==Biological effects== Besides functioning as an [[antioxidant]] and [[anthelmintic]], many [[isoflavone]]s have been shown to interact with [[animal]] and [[human]] [[estrogen receptor]]s, causing effects in the body similar to those caused by the [[estrogen|hormone estrogen]]. [[Isoflavone]]s also produce non-hormonal effects.{{Citation needed|date=April 2022}} ===Molecular function=== Genistein influences multiple [[biochemical]] functions in living cells: * [[full agonist]] of [[ERβ]] ([[EC50|EC<sub>50</sub>]] = 7.62 nM) and, to a much lesser extent (~20-fold), [[full agonist]]<ref name="PatisaulMelby2002">{{cite journal |last1=Patisaul |first1=Heather B. |last2=Melby |first2=Melissa |last3=Whitten |first3=Patricia L. |last4=Young |first4=Larry J. |title=Genistein Affects ERβ- But Not ERα-Dependent Gene Expression in the Hypothalamus |journal=Endocrinology |volume=143 |issue=6 |year=2002 |pages=2189–2197 |issn=0013-7227 |doi=10.1210/endo.143.6.8843 |pmid=12021182 |doi-access=free}}</ref> or [[partial agonist]] of [[ERα]]<ref name="Green2015">{{Citation |last=Green |first=Sarah E |title=In Vitro Comparison of Estrogenic Activities of Popular Women's Health Botanicals |year=2015 |url=https://indigo.uic.edu/handle/10027/19647 |access-date=2016-01-01 |archive-date=2016-02-22 |archive-url=https://web.archive.org/web/20160222183517/https://indigo.uic.edu/handle/10027/19647 |url-status=dead}}</ref> * agonist of [[G protein-coupled estrogen receptor]] (affinity of 133 nM)<ref name="pmid26023144">{{cite journal |vauthors=Prossnitz ER, Arterburn JB |title=International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators |journal=Pharmacol. Rev. |volume=67 |issue=3 |pages=505–40 |date=July 2015 |pmid=26023144 |pmc=4485017 |doi=10.1124/pr.114.009712}}</ref><ref name="ProssnitzBarton2014">{{cite journal |last1=Prossnitz |first1=Eric R. |last2=Barton |first2=Matthias |title=Estrogen biology: New insights into GPER function and clinical opportunities |journal=Molecular and Cellular Endocrinology |volume=389 |issue=1–2 |year=2014 |pages=71–83 |issn=0303-7207 |doi=10.1016/j.mce.2014.02.002 |pmid=24530924 |pmc=4040308}}</ref> * activation of peroxisome proliferator-activated receptors ([[PPAR]]s) * inhibition of several [[tyrosine kinase]]s * inhibition of [[topoisomerase]] * inhibition of [[Aromatic L-amino acid decarboxylase|AAAD]] * direct antioxidation with some pro oxidative features * activation of [[Nrf2]] antioxidative response * stimulation of [[autophagy]]<ref name="Gossner-2007">{{cite journal |last1=Gossner |first1=G |last2=Choi |first2=M |last3=Tan |first3=L |last4=Fogoros |first4=S |last5=Griffith |first5=K |last6=Kuenker |first6=M |last7=Liu |first7=J |year=2007 |title=Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells |journal=Gynecologic Oncology |volume=105 |issue=1 |pages=23–30 |pmid=17234261 |doi=10.1016/j.ygyno.2006.11.009}}</ref><ref name="Singletary-2008">{{cite journal |last1=Singletary |first1=K. |last2=Milner |first2=J. |year=2008 |title=Diet, Autophagy, and Cancer: A Review |journal=Cancer Epidemiology, Biomarkers & Prevention |volume=17 |issue=7 |pages=1596–610 |pmid=18628411 |doi=10.1158/1055-9965.EPI-07-2917 |doi-access=free}}</ref><ref name="Nakamura-2009">{{cite journal |last1=Nakamura |first1=Yoshitaka |last2=Yogosawa |first2=Shingo |last3=Izutani |first3=Yasuyuki |last4=Watanabe |first4=Hirotsuna |last5=Otsuji |first5=Eigo |last6=Sakai |first6=Tosiyuki |year=2009 |title=A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy |journal=Molecular Cancer |volume=8 |pages=100 |pmc=2784428 |pmid=19909554 |doi=10.1186/1476-4598-8-100 |doi-access=free }}</ref> * inhibition of the mammalian [[hexose]] transporter [[GLUT1]] * contraction of several types of [[smooth muscle]]s * modulation of CFTR channel, potentiating its opening at low concentration and inhibiting it a higher doses. * inhibition of cytosine methylation * inhibition of [[DNA methyltransferase]]<ref>{{cite journal |last1=Fang |first1=Mingzhu |last2=Chen |first2=Dapeng |last3=Yang |first3=Chung S. |date=January 2007 |title=Dietary polyphenols may affect DNA methylation |journal=The Journal of Nutrition |volume=137 |issue=1 Suppl |pages=223S–228S |pmid=17182830 |doi=10.1093/jn/137.1.223S |doi-access=free}}</ref> * inhibition of the [[glycine receptor]] * inhibition of the [[nicotinic acetylcholine receptor]]<ref>{{Cite journal |last1=Glushakov |first1=A. V. |last2=Glushakova |first2=H. Y. |last3=Skok |first3=V. I. |date=1999-01-15 |title=Modulation of nicotinic acetylcholine receptor activity in submucous neurons by intracellular messengers |journal=Journal of the Autonomic Nervous System |volume=75 |issue=1 |pages=16–22 |issn=0165-1838 |pmid=9935265 |doi=10.1016/S0165-1838(98)00165-9}}</ref> ===Activation of PPARs=== Isoflavones genistein and daidzein bind to and transactivate all three PPAR isoforms, α, δ, and γ.<ref name=pmid25083916>{{cite journal |last1=Wang |first1=Limei |last2=Waltenberger |first2=Birgit |last3=Pferschy-Wenzig |first3=Eva-Maria |last4=Blunder |first4=Martina |last5=Liu |first5=Xin |last6=Malainer |first6=Clemens |last7=Blazevic |first7=Tina |last8=Schwaiger |first8=Stefan |last9=Rollinger |first9=Judith M. |last10=Heiss |first10=Elke H. |last11=Schuster |first11=Daniela |last12=Kopp |first12=Brigitte |last13=Bauer |first13=Rudolf |last14=Stuppner |first14=Hermann |last15=Dirsch |first15=Verena M. |last16=Atanasov |first16=Atanas G. |year=2014 |title=Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review |journal=Biochemical Pharmacology |pmid=25083916 |doi=10.1016/j.bcp.2014.07.018 |pmc=4212005 |volume=92 |issue=1 |pages=73–89}}</ref> For example, membrane-bound PPARγ-binding assay showed that genistein can directly interact with the PPARγ ligand binding domain and has a measurable Ki of 5.7 mM.<ref>{{cite journal |last1=Dang |first1=Zhi-Chao |last2=Audinot |first2=Valérie |last3=Papapoulos |first3=Socrates E. |last4=Boutin |first4=Jean A. |last5=Löwik |first5=Clemens W. G. M. |year=2002 |title=Peroxisome Proliferator-activated Receptor γ (PPARγ) as a Molecular Target for the Soy Phytoestrogen Genistein |journal=Journal of Biological Chemistry |volume=278 |issue=2 |pages=962–7 |pmid=12421816 |doi=10.1074/jbc.M209483200 |doi-access=free}}</ref> Gene reporter assays showed that genistein at concentrations between 1 and 100 uM activated PPARs in a dose dependent way in KS483 mesenchymal progenitor cells, breast cancer MCF-7 cells, T47D cells and MDA-MD-231 cells, murine macrophage-like RAW 264.7 cells, endothelial cells and in Hela cells. Several studies have shown that both ERs and PPARs influenced each other and therefore induce differential effects in a dose-dependent way. The final biological effects of genistein are determined by the balance among these pleiotrophic actions.<ref name=pmid25083916/><ref>{{cite journal |last1=Dang |first1=Zhi Chao |last2=Lowik |first2=Clemens |year=2005 |title=Dose-dependent effects of phytoestrogens on bone |journal=Trends in Endocrinology and Metabolism |volume=16 |issue=5 |pages=207–13 |pmid=15922618 |doi=10.1016/j.tem.2005.05.001 |s2cid=35366615}}</ref><ref>{{cite journal |last1=Dang |first1=Z. C. |year=2009 |title=Dose-dependent effects of soy phyto-oestrogen genistein on adipocytes: Mechanisms of action |journal=Obesity Reviews |volume=10 |issue=3 |pages=342–9 |pmid=19207876 |doi=10.1111/j.1467-789X.2008.00554.x |s2cid=13804244}}</ref> ===Tyrosine kinase inhibitor=== The main known activity of genistein is [[tyrosine kinase inhibitor]], mostly of [[epidermal growth factor receptor]] (EGFR). Tyrosine kinases are less widespread than their ser/thr counterparts but implicated in almost all cell growth and proliferation signal cascades.{{citation needed|date=September 2014}} ===Redox-active—not only antioxidant=== Genistein may act as direct [[antioxidant]], similar to many other [[isoflavone]]s, and thus may alleviate damaging effects of [[free radicals]] in tissues.<ref name="Han-2009">{{cite journal |last1=Han |first1=Rui-Min |last2=Tian |first2=Yu-Xi |last3=Liu |first3=Yin |last4=Chen |first4=Chang-Hui |last5=Ai |first5=Xi-Cheng |last6=Zhang |first6=Jian-Ping |last7=Skibsted |first7=Leif H. |year=2009 |title=Comparison of Flavonoids and Isoflavonoids as Antioxidants |journal=Journal of Agricultural and Food Chemistry |volume=57 |issue=9 |pages=3780–5 |pmid=19296660 |doi=10.1021/jf803850p|bibcode=2009JAFC...57.3780H }}</ref><ref name="Borrás-2010">{{cite journal |last1=Borrás |first1=Consuelo |last2=Gambini |first2=Juan |last3=López-Grueso |first3=Raúl |last4=Pallardó |first4=Federico V. |last5=Viña |first5=Jose |year=2010 |title=Direct antioxidant and protective effect of estradiol on isolated mitochondria |journal=Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease |volume=1802 |issue=1 |pages=205–11 |pmid=19751829 |doi=10.1016/j.bbadis.2009.09.007 |url=https://hal.archives-ouvertes.fr/hal-00543009/file/PEER_stage2_10.1016%252Fj.bbadis.2009.09.007.pdf}}</ref> The same molecule of genistein, similar to many other [[isoflavone]]s, by generation of free radicals poison [[topoisomerase]] II, an enzyme important for maintaining DNA stability.<ref name="pmid17458941">{{cite journal |last1=Bandele |first1=Omari J. |last2=Osheroff |first2=Neil |year=2007 |title=Bioflavonoids as Poisons of Human Topoisomerase IIα and IIβ |journal=Biochemistry |volume=46 |issue=20 |pages=6097–108 |pmid=17458941 |doi=10.1021/bi7000664 |pmc=2893030}}</ref><ref name="Markovits-1989">{{cite journal |last1=Markovits |first1=Judith |last2=Linassier |first2=Claude |last3=Fossé |first3=Philippe |last4=Couprie |first4=Jeanine |last5=Pierre |first5=Josiane |last6=Jacquemin-Sablon |first6=Alain |last7=Saucier |first7=Jean-Marie |last8=Le Pecq |first8=Jean-Bernard |last9=Larsen |first9=Annette K. |date=September 1989 |title=Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II |journal=Cancer Research |volume=49 |issue=18 |pages=5111–7 |pmid=2548712 |url=http://cancerres.aacrjournals.org/cgi/pmidlookup?view=long&pmid=2548712}} </ref><ref name="López-Lazaro-2007">{{cite journal |last1=López-Lázaro |first1=Miguel |last2=Willmore |first2=Elaine |last3=Austin |first3=Caroline A. |year=2007 |title=Cells Lacking DNA Topoisomerase IIβ are Resistant to Genistein |journal=Journal of Natural Products |volume=70 |issue=5 |pages=763–7 |pmid=17411092 |doi=10.1021/np060609z}}</ref> Human cells turn on beneficial, detoxifying [[Nrf2]] factor in response to genistein insult. This pathway may be responsible for observed health maintaining properties of small doses of genistein.<ref name="Mann-2009">{{cite journal |last1=Mann |first1=Giovanni E |last2=Bonacasa |first2=Barbara |last3=Ishii |first3=Tetsuro |last4=Siow |first4=Richard CM |year=2009 |title=Targeting the redox sensitive Nrf2–Keap1 defense pathway in cardiovascular disease: Protection afforded by dietary isoflavones |journal=Current Opinion in Pharmacology |volume=9 |issue=2 |pages=139–45 |pmid=19157984 |doi=10.1016/j.coph.2008.12.012}}</ref> ===Anthelmintic=== The root-tuber peel extract of the [[leguminous|leguminous plant]] ''[[Flemingia vestita]]'' is the traditional [[anthelmintics|anthelmintic]] of the [[Khasi people|Khasi tribes]] of India. While investigating its anthelmintic activity, genistein was found to be the major [[isoflavone]] responsible for the [[deworming]] property.<ref name="Rao"/><ref name="Tan">{{cite journal |last1=Tandon |first1=V. |author-link1=Vibha Tandon|last2=Pal |first2=P. |last3=Roy |first3=B. |last4=Rao |first4=H. S. P. |last5=Reddy |first5=K. S. |year=1997 |title=In vitro anthelmintic activity of root-tuber extract of ''Flemingia vestita'', an indigenous plant in Shillong, India |journal=Parasitology Research |volume=83 |issue=5 |pages=492–8 |pmid=9197399 |doi=10.1007/s004360050286 |s2cid=25086153 |url=http://dspace.nehu.ac.in/handle/1/1464}}</ref> Genistein was subsequently demonstrated to be highly effective against [[intestinal parasite]]s such as the [[poultry]] [[tapeworm|cestode]] ''[[Raillietina echinobothrida]]'',<ref name="Tan"/> the [[pig|pork]] [[trematode]] '' [[Fasciolopsis|Fasciolopsis buski]]'',<ref>{{cite journal |last1=Kar |first1=Pradip K |last2=Tandon |first2=Veena |last3=Saha |first3=Nirmalendu |year=2002 |title=Anthelmintic efficacy of ''Flemingia vestita'': Genistein-induced effect on the activity of nitric oxide synthase and nitric oxide in the trematode parasite, ''Fasciolopsis buski'' |journal=Parasitology International |volume=51 |issue=3 |pages=249–57 |pmid=12243779 |doi=10.1016/S1383-5769(02)00032-6 |url=http://dspace.nehu.ac.in/handle/1/3556}}</ref> and the [[Fasciola hepatica|sheep liver fluke ''Fasciola hepatica'']].<ref>{{cite journal |last1=Toner |first1=E. |last2=Brennan |first2=G. P. |last3=Wells |first3=K. |last4=McGeown |first4=J. G. |last5=Fairweather |first5=I. |year=2008 |title=Physiological and morphological effects of genistein against the liver fluke, ''Fasciola hepatica'' |journal=Parasitology |volume=135 |issue=10 |pages=1189–203 |pmid=18771609 |doi=10.1017/S0031182008004630 |s2cid=6525410}}</ref> It exerts its anthelmintic activity by inhibiting the enzymes of [[glycolysis]] and [[glycogenolysis]],<ref>{{cite journal |last1=Tandon |first1=Veena |last2=Das |first2=Bidyadhar |last3=Saha |first3=Nirmalendu |year=2003 |title=Anthelmintic efficacy of ''Flemingia vestita'' (Fabaceae): Effect of genistein on glycogen metabolism in the cestode, ''Raillietina echinobothrida'' |journal=Parasitology International |volume=52 |issue=2 |pages=179–86 |pmid=12798931 |doi=10.1016/S1383-5769(03)00006-0}}</ref><ref>{{cite journal |last1=Das |first1=B. |last2=Tandon |first2=V. |last3=Saha |first3=N. |year=2004 |title=Anthelmintic efficacy of ''Flemingia vestita'' (Fabaceae): Alteration in the activities of some glycolytic enzymes in the cestode, ''Raillietina echinobothrida'' |journal=Parasitology Research |volume=93 |issue=4 |pages=253–61 |pmid=15138892 |doi=10.1007/s00436-004-1122-8 |s2cid=9491127 |url=http://dspace.nehu.ac.in/handle/1/3458}}</ref> and disturbing the [[calcium homeostasis|Ca2+ homeostasis]] and [[nitric oxide|NO]] activity in the [[parasitism|parasites]].<ref>{{cite journal |doi=10.1016/j.parint.2005.08.002 |pmid=16198617 |title=Effect of isoflavone from Flemingia vestita (Fabaceae) on the Ca2+ homeostasis in Raillietina echinobothrida, the cestode of domestic fowl |journal=Parasitology International |volume=55 |issue=1 |pages=17–21 |year=2006 |last1=Das |first1=Bidyadhar |last2=Tandon |first2=Veena |last3=Saha |first3=Nirmalendu |url=http://dspace.nehu.ac.in/handle/1/3794}}</ref><ref>{{cite journal |last1=Das |first1=Bidyadhar |last2=Tandon |first2=Veena |last3=Lyndem |first3=Larisha M. |last4=Gray |first4=Alexander I. |last5=Ferro |first5=Valerie A. |year=2009 |title=Phytochemicals from ''Flemingia vestita'' (Fabaceae) and ''Stephania glabra'' (Menispermeaceae) alter cGMP concentration in the cestode ''Raillietina echinobothrida'' |journal=Comparative Biochemistry and Physiology C |volume=149 |issue=3 |pages=397–403 |pmid=18854226 |doi=10.1016/j.cbpc.2008.09.012 |url=http://dspace.nehu.ac.in/handle/1/3778}}</ref> It has also been investigated in [[tapeworm|human tapeworms]] such as ''[[Echinococcus multilocularis]]'' and ''[[Echinococcus granulosus|E. granulosus]]'' metacestodes that genistein and its derivatives, Rm6423 and Rm6426, are potent [[anthelmintics|cestocides]].<ref>{{cite journal |last1=Naguleswaran |first1=Arunasalam |last2=Spicher |first2=Martin |last3=Vonlaufen |first3=Nathalie |last4=Ortega-Mora |first4=Luis M. |last5=Torgerson |first5=Paul |last6=Gottstein |first6=Bruno |last7=Hemphill |first7=Andrew |year=2006 |title=In Vitro Metacestodicidal Activities of Genistein and Other Isoflavones against'' Echinococcus multilocularis'' and ''Echinococcus granulosus'' |journal=Antimicrobial Agents and Chemotherapy |volume=50 |issue=11 |pages=3770–8 |pmid=16954323 |doi=10.1128/AAC.00578-06 |pmc=1635224}}</ref> ===Atherosclerosis=== Genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits [[leukocyte]]-[[endothelium]] interaction, thereby modulating vascular inflammation, a major event in the [[pathogenesis]] of [[atherosclerosis]].<ref>{{cite journal |last1=Si |first1=Hongwei |last2=Liu |first2=Dongmin |last3=Si |first3=Hongwei |last4=Liu |first4=Dongmin |year=2007 |title=Phytochemical Genistein in the Regulation of Vascular Function: New Insights |journal=Current Medicinal Chemistry |volume=14 |issue=24 |pages=2581–9 |pmid=17979711 |doi=10.2174/092986707782023325}}</ref> ===Cancer links=== Genistein and other [[isoflavone]]s have been identified as [[angiogenesis inhibitors]], and found to inhibit the uncontrolled cell growth of [[cancer]], most likely by inhibiting the activity of substances in the body that regulate [[cell division]] and cell survival ([[growth factors]]). Various studies have found that moderate doses of genistein have inhibitory effects on [[cancer]]s of the [[prostate]],<ref name=pmid11305594>{{cite journal |last1=Morito |first1=Keiko |last2=Hirose |first2=Toshiharu |last3=Kinjo |first3=Junei |last4=Hirakawa |first4=Tomoki |last5=Okawa |first5=Masafumi |last6=Nohara |first6=Toshihiro |last7=Ogawa |first7=Sumito |last8=Inoue |first8=Satoshi |last9=Muramatsu |first9=Masami |last10=Masamune |first10=Yukito |year=2001 |title=Interaction of Phytoestrogens with Estrogen Receptors α and β |journal=Biological & Pharmaceutical Bulletin |volume=24 |issue=4 |pages=351–6 |pmid=11305594 |doi=10.1248/bpb.24.351|doi-access=free }}</ref><ref>{{cite journal |last1=Hwang |first1=Ye Won |last2=Kim |first2=Soo Young |last3=Jee |first3=Sun Ha |last4=Kim |first4=Youn Nam |last5=Nam |first5=Chung Mo |year=2009 |title=Soy Food Consumption and Risk of Prostate Cancer: A Meta-Analysis of Observational Studies |journal=Nutrition and Cancer |volume=61 |issue=5 |pages=598–606 |pmid=19838933 |doi=10.1080/01635580902825639 |s2cid=19719873}}</ref> [[cervix]],<ref>{{cite journal |last1=Kim |first1=Su-Hyeon |last2=Kim |first2=Su-Hyeong |last3=Kim |first3=Yong-Beom |last4=Jeon |first4=Yong-Tark |last5=Lee |first5=Sang-Chul |last6=Song |first6=Yong-Sang |year=2009 |title=Genistein Inhibits Cell Growth by Modulating Various Mitogen-Activated Protein Kinases and AKT in Cervical Cancer Cells |journal=Annals of the New York Academy of Sciences |volume=1171 |issue=1 |pages=495–500 |pmid=19723095 |bibcode=2009NYASA1171..495K |doi=10.1111/j.1749-6632.2009.04899.x |s2cid=26111697}}</ref> [[brain]],<ref>{{cite journal |last1=Das |first1=Arabinda |last2=Banik |first2=Naren L. |last3=Ray |first3=Swapan K. |year=2009 |title=Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes |journal=Cancer |volume=116 |issue=1 |pages=164–76 |pmid=19894226 |pmc=3159962 |doi=10.1002/cncr.24699}}</ref> [[breast]]<ref name=pmid11305594/><ref>{{cite journal |last1=Sakamoto |first1=Takako |last2=Horiguchi |first2=Hyogo |last3=Oguma |first3=Etsuko |last4=Kayama |first4=Fujio |year=2010 |title=Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells |journal=The Journal of Nutritional Biochemistry |volume=21 |issue=9 |pages=856–64 |pmid=19800779 |doi=10.1016/j.jnutbio.2009.06.010}}</ref><ref>{{cite journal |last1=de Lemos |first1=Mário L |year=2001 |title=Effects of Soy Phytoestrogens Genistein and Daidzein on Breast Cancer Growth |journal=The Annals of Pharmacotherapy |volume=35 |issue=9 |pages=1118–21 |pmid=11573864 |doi=10.1345/aph.10257 |s2cid=208876381}}</ref> and [[Colon (anatomy)|colon]].<ref name="Nakamura-2009"/> It has also been shown that genistein makes some cells more sensitive to radio-therapy; although, timing of [[phytoestrogen]] use is also important.<ref name="pmid17261753">{{cite journal |last1=de Assis |first1=Sonia |last2=Hilakivi-Clarke |first2=Leena |year=2006 |title=Timing of Dietary Estrogenic Exposures and Breast Cancer Risk |journal=Annals of the New York Academy of Sciences |volume=1089 |issue=1 |pages=14–35 |pmid=17261753 |bibcode=2006NYASA1089...14D |doi=10.1196/annals.1386.039 |s2cid=22170442}}</ref> Genistein's chief method of activity is as a [[tyrosine kinase inhibitor]]. Tyrosine kinases are less widespread than their ser/thr counterparts but implicated in almost all cell growth and proliferation signal cascades. Inhibition of [[Type II topoisomerase|DNA topoisomerase II]] also plays an important role in the cytotoxic activity of genistein.<ref name="Markovits-1989"/><ref>{{cite journal |doi=10.1021/np060609z |pmid=17411092 |title=Cells Lacking DNA Topoisomerase IIβ are Resistant to Genistein |journal=Journal of Natural Products |volume=70 |issue=5 |pages=763–7 |year=2007 |last1=López-Lázaro |first1=Miguel |last2=Willmore |first2=Elaine |last3=Austin |first3=Caroline A.}}</ref> The observation that transition of normal lymphocytes from quiescence (G<sub>0</sub>) to the G<sub>1</sub> phase of the cell cycle is particularly sensitive to genistein prompted the authors to suggest that this [[isoflavone]] may be potential [[immunosuppressant]].<ref>{{cite journal |last1=Traganos |first1=F |last2=Ardelt |first2=B |last3=Halko |first3=N |last4=Bruno |first4=S |last5=Darzynkiewicz |first5=Z |year=1992 |title=Effects of genistein on the growth and cell cycle progression of normal human lymphocytes and human leukemic MOLT-4 and HL-60 cells |journal=Cancer Res. |volume=52 |issue=22 |pages=6200–8 |pmid=1330289}}</ref> Genistein has been used to selectively target pre B-cells via [[antibody-drug conjugate|conjugation with an anti-CD19 antibody]].<ref>{{cite book |last1=Safa |first1=Malek |last2=Foon |first2=Kenneth A. |last3=Oldham |first3=Robert K. |chapter=Drug Immunoconjugates |chapter-url=https://books.google.com/books?id=emGC_fRJH_IC&pg=PA450 |editor1-first=Robert K. |editor1-last=Oldham |editor2-first=Robert O. |editor2-last=Dillman |title=Principles of Cancer Biotherapy |edition=5th |pages=451–62 |year=2009 |doi=10.1007/978-90-481-2289-9_12 |isbn=978-90-481-2277-6}}</ref> Studies on rodents have found genistein to be useful in the treatment of [[leukemia]], and that it can be used in combination with certain other antileukemic drugs to improve their efficacy.<ref>{{cite journal |last1=Raynal |first1=Noël J. M. |last2=Charbonneau |first2=Michel |last3=Momparler |first3=Louise F. |last4=Momparler |first4=Richard L. |year=2008 |title=Synergistic Effect of 5-Aza-2′-Deoxycytidine and Genistein in Combination Against Leukemia |journal=Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics |volume=17 |issue=5 |pages=223–30 |pmid=18980019 |doi=10.3727/096504008786111356|doi-access=free }}</ref> ===Estrogen receptor — more cancer links=== Due to its structure similarity to 17β-estradiol ([[estrogen]]), genistein can compete with it and bind to [[estrogen receptor]]s. However, genistein shows much higher affinity toward [[Estrogen receptor beta|estrogen receptor β]] than toward [[Estrogen receptor alpha|estrogen receptor α]].<ref>{{cite journal |last1=Kuiper |first1=George G. J. M. |last2=Lemmen |first2=Josephine G. |last3=Carlsson |first3=Bo |last4=Corton |first4=J. Christopher |last5=Safe |first5=Stephen H. |last6=van der Saag |first6=Paul T. |last7=van der Burg |first7=Bart |last8=Gustafsson |first8=Jan-Åke |year=1998 |title=Interaction of Estrogenic Chemicals and Phytoestrogens with Estrogen Receptor β |journal=Endocrinology |volume=139 |issue=10 |pages=4252–63 |pmid=9751507 |doi=10.1210/endo.139.10.6216 |doi-access=free}}</ref> Data from ''[[in vitro]]'' and ''[[in vivo]]'' research confirms that genistein can increase rate of growth of some [[estrogen receptor|ER]] expressing breast cancers. Genistein was found to increase the rate of proliferation of estrogen-dependent breast cancer when not cotreated with an estrogen antagonist.<ref name="pmid16537557">{{cite journal |last1=Ju |first1=Young H. |last2=Allred |first2=Kimberly F. |last3=Allred |first3=Clinton D. |last4=Helferich |first4=William G. |year=2006 |title=Genistein stimulates growth of human breast cancer cells in a novel, postmenopausal animal model, with low plasma estradiol concentrations |journal=Carcinogenesis |volume=27 |issue=6 |pages=1292–9 |pmid=16537557 |doi=10.1093/carcin/bgi370 |doi-access=free}}</ref><ref name="pmid15126563">{{cite journal |last1=Chen |first1=Wen-Fang |last2=Wong |first2=Man-Sau |year=2004 |title=Genistein Enhances Insulin-Like Growth Factor Signaling Pathway in Human Breast Cancer (MCF-7) Cells |journal=The Journal of Clinical Endocrinology & Metabolism |volume=89 |issue=5 |pages=2351–9 |pmid=15126563 |doi=10.1210/jc.2003-032065 |doi-access=free}}</ref><ref name="Yang-2010">{{cite journal |last1=Yang |first1=Xiaohe |last2=Yang |first2=Shihe |last3=McKimmey |first3=Christine |last4=Liu |first4=Bolin |last5=Edgerton |first5=Susan M. |last6=Bales |first6=Wesley |last7=Archer |first7=Linda T. |last8=Thor |first8=Ann D. |year=2010 |title=Genistein induces enhanced growth promotion in ER-positive/erbB-2-overexpressing breast cancers by ER-erbB-2 cross talk and p27/kip1 downregulation |journal=Carcinogenesis |volume=31 |issue=4 |pages=695–702 |pmid=20067990 |doi=10.1093/carcin/bgq007 |doi-access=free}}</ref> It was also found to decrease efficiency of [[tamoxifen]] and [[letrozole]] - drugs commonly used in breast cancer therapy.<ref name="Helferich-2008">{{cite journal |last1=Helferich |first1=W. G. |last2=Andrade |first2=J. E. |last3=Hoagland |first3=M. S. |year=2008 |title=Phytoestrogens and breast cancer: A complex story |journal=Inflammopharmacology |volume=16 |issue=5 |pages=219–26 |pmid=18815740 |doi=10.1007/s10787-008-8020-0 |s2cid=11659490}}</ref><ref name="Tonetti-2007">{{cite journal |last1=Tonetti |first1=Debra A. |last2=Zhang |first2=Yiyun |last3=Zhao |first3=Huiping |last4=Lim |first4=Sok-Bee |last5=Constantinou |first5=Andreas I. |year=2007 |title=The Effect of the Phytoestrogens Genistein, Daidzein, and Equol on the Growth of Tamoxifen-Resistant T47D/PKCα |journal=Nutrition and Cancer |volume=58 |issue=2 |pages=222–9 |pmid=17640169 |doi=10.1080/01635580701328545 |s2cid=10831895}}</ref> Genistein was found to inhibit immune response towards cancer cells allowing their survival.<ref name="Jiang-2008">{{cite journal |last1=Jiang |first1=Xinguo |last2=Patterson |first2=Nicole M. |last3=Ling |first3=Yan |last4=Xie |first4=Jianwei |last5=Helferich |first5=William G. |last6=Shapiro |first6=David J. |title=Low Concentrations of the Soy Phytoestrogen Genistein Induce Proteinase Inhibitor 9 and Block Killing of Breast Cancer Cells by Immune Cells |journal=Endocrinology |volume=149 |issue=11 |pages=5366–73 |pmid=18669594 |year=2008 |doi=10.1210/en.2008-0857 |pmc=2584580}}</ref> ===Effects in males=== Isoflavones can act like [[estrogen]], stimulating development and maintenance of female characteristics, or they can block cells from using cousins of estrogen. In vitro studies have shown genistein to induce [[apoptosis]] of testicular cells at certain levels, thus raising concerns about effects it could have on male fertility;<ref>{{cite journal |last1=Kumi-Diaka |first1=James |last2=Rodriguez |first2=Rosanna |last3=Goudaze |first3=Gould |year=1998 |title=Influence of genistein (4′,5,7-trihydroxyisoflavone) on the growth and proliferation of testicular cell lines |journal=Biology of the Cell |volume=90 |issue=4 |pages=349–54 |pmid=9800352 |doi=10.1016/S0248-4900(98)80015-4}}</ref> however, one study found that isoflavones had "no observable effect on endocrine measurements, testicular volume or semen parameters over the study period." in healthy males given isoflavone supplements daily over a 2-month period.<ref>{{cite journal |last1=Mitchell |first1=Julie H. |last2=Cawood |first2=Elizabeth |last3=Kinniburgh |first3=David |last4=Provan |first4=Anne |last5=Collins |first5=Andrew R. |last6=Irvine |first6=D. Stewart |year=2001 |title=Effect of a phytoestrogen food supplement on reproductive health in normal males |journal=Clinical Science |volume=100 |issue=6 |pages=613–8 |pmid=11352776 |doi=10.1042/CS20000212}}</ref> ===Carcinogenic and toxic potential=== Genistein was, among other [[flavonoid]]s, found to be a strong [[topoisomerase inhibitor]], similarly to some chemotherapeutic anticancer drugs ex. [[etoposide]] and [[doxorubicin]].<ref name="pmid17458941"/><ref name="pmid15901918">{{cite journal |last1=Lutz |first1=Werner K. |last2=Tiedge |first2=Oliver |last3=Lutz |first3=Roman W. |last4=Stopper |first4=Helga |year=2005 |title=Different Types of Combination Effects for the Induction of Micronuclei in Mouse Lymphoma Cells by Binary Mixtures of the Genotoxic Agents MMS, MNU, and Genistein |journal=Toxicological Sciences |volume=86 |issue=2 |pages=318–23 |pmid=15901918 |doi=10.1093/toxsci/kfi200 |doi-access=free|hdl=20.500.11850/32271 |hdl-access=free }}</ref> In high doses it was found to be strongly toxic to normal cells.<ref name="Jin-2007"/> This effect may be responsible for both anticarcinogenic and carcinogenic potential of the substance.<ref name="López-Lazaro-2007"/><ref name="pmid18357397">{{cite journal |last1=Schmidt |first1=Friederike |last2=Knobbe |first2=Christiane |last3=Frank |first3=Brigitte |last4=Wolburg |first4=Hartwig |last5=Weller |first5=Michael |year=2008 |title=The topoisomerase II inhibitor, genistein, induces G2/M arrest and apoptosis in human malignant glioma cell lines |journal=Oncology Reports |volume=19 |issue=4 |pages=1061–6 |pmid=18357397 |doi=10.3892/or.19.4.1061 |doi-access=free}}</ref> It was found to deteriorate DNA of cultured blood stem cells, which may lead to leukemia.<ref name="pmid17468513">{{cite journal |last1=van Waalwijk van Doorn-Khosrovani |first1=Sahar Barjesteh |last2=Janssen |first2=Jannie |last3=Maas |first3=Lou M. |last4=Godschalk |first4=Roger W. L. |last5=Nijhuis |first5=Jan G. |last6=van Schooten |first6=Frederik J. |year=2007 |title=Dietary flavonoids induce MLL translocations in primary human CD34+ cells |journal=Carcinogenesis |volume=28 |issue=8 |pages=1703–9 |pmid=17468513 |doi=10.1093/carcin/bgm102 |doi-access=free}}</ref> Genistein among other [[flavonoid]]s is suspected to increase risk of infant leukemia when consumed during pregnancy.<ref name="pmid15767345">{{cite journal |last1=Spector |first1=Logan G. |last2=Xie |first2=Yang |last3=Robison |first3=Leslie L. |last4=Heerema |first4=Nyla A. |last5=Hilden |first5=Joanne M. |last6=Lange |first6=Beverly |last7=Felix |first7=Carolyn A. |last8=Davies |first8=Stella M. |last9=Slavin |first9=Joanne |last10=Potter |first10=John D. |last11=Blair |first11=Cindy K. |last12=Reaman |first12=Gregory H. |last13=Ross |first13=Julie A. |year=2005 |title=Maternal Diet and Infant Leukemia: The DNA Topoisomerase II Inhibitor Hypothesis: A Report from the Children's Oncology Group |journal=Cancer Epidemiology, Biomarkers & Prevention |volume=14 |issue=3 |pages=651–5 |pmid=15767345 |doi=10.1158/1055-9965.EPI-04-0602 |doi-access=free}}</ref><ref name="pmid20638367">{{cite journal |last1=Azarova |first1=Anna M. |last2=Lin |first2=Ren-Kuo |last3=Tsai |first3=Yuan-Chin |last4=Liu |first4=Leroy F. |author4-link=Leroy Liu |last5=Lin |first5=Chao-Po |last6=Lyu |first6=Yi Lisa |year=2010 |title=Genistein induces topoisomerase IIbeta- and proteasome-mediated DNA sequence rearrangements: Implications in infant leukemia |journal=Biochemical and Biophysical Research Communications |volume=399 |issue=1 |pages=66–71 |pmid=20638367 |pmc=3376163 |doi=10.1016/j.bbrc.2010.07.043}}</ref> ===Sanfilippo syndrome treatment=== Genistein decreases pathological accumulation of [[glycosaminoglycan]]s in [[Sanfilippo syndrome]]. ''In vitro'' animal studies and clinical experiments suggest that the symptoms of the disease may be alleviated by adequate dose of genistein.<ref name="Piotrowska-2006">{{cite journal |last1=Piotrowska |first1=Ewa |last2=Jakóbkiewicz-Banecka |first2=Joanna |last3=Barańska |first3=Sylwia |last4=Tylki-Szymańska |first4=Anna |last5=Czartoryska |first5=Barbara |last6=Węgrzyn |first6=Alicja |last7=Węgrzyn |first7=Grzegorz |year=2006 |title=Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses |journal=European Journal of Human Genetics |volume=14 |issue=7 |pages=846–52 |pmid=16670689 |doi=10.1038/sj.ejhg.5201623 |doi-access=free}}</ref> Genistein was found to also possess toxic properties toward brain cells.<ref name="Jin-2007">{{cite journal |last1=Jin |first1=Ying |last2=Wu |first2=Heng |last3=Cohen |first3=Eric M. |last4=Wei |first4=Jianning |last5=Jin |first5=Hong |last6=Prentice |first6=Howard |last7=Wu |first7=Jang-Yen |year=2007 |title=Genistein and daidzein induce neurotoxicity at high concentrations in primary rat neuronal cultures |journal=Journal of Biomedical Science |volume=14 |issue=2 |pages=275–84 |pmid=17245525 |doi=10.1007/s11373-006-9142-2}}</ref> Among many pathways stimulated by genistein, [[autophagy]] may explain the observed efficiency of the substance as [[autophagy]] is significantly impaired in the disease.<ref name="Ballabio-2009">{{cite journal |last1=Ballabio |first1=A. |year=2009 |title=Disease pathogenesis explained by basic science: Lysosomal storage diseases as autophagocytic disorders |journal=International Journal of Clinical Pharmacology and Therapeutics |volume=47 |issue=Suppl 1 |pages=S34–8 |pmid=20040309 |doi=10.5414/cpp47034}}</ref><ref name="Settembre-2008">{{cite journal |last1=Settembre |first1=Carmine |last2=Fraldi |first2=Alessandro |last3=Jahreiss |first3=Luca |last4=Spampanato |first4=Carmine |last5=Venturi |first5=Consuelo |last6=Medina |first6=Diego |last7=de Pablo |first7=Raquel |last8=Tacchetti |first8=Carlo |last9=Rubinsztein |first9=David C. |last10=Ballabio |first10=Andrea |year=2007 |title=A block of autophagy in lysosomal storage disorders |journal=Human Molecular Genetics |volume=17 |issue=1 |pages=119–29 |pmid=17913701 |doi=10.1093/hmg/ddm289 |doi-access=free}}</ref> === Cognition === A study looking at Italians older than 50 found that those with the highest genistein intake had the lowest odds of cognitive impairment.<ref>{{Cite journal |last1=Giampieri |first1=Francesca |last2=Godos |first2=Justyna |last3=Caruso |first3=Giuseppe |last4=Owczarek |first4=Marcin |last5=Jurek |first5=Joanna |last6=Castellano |first6=Sabrina |last7=Ferri |first7=Raffaele |last8=Caraci |first8=Filippo |last9=Grosso |first9=Giuseppe |date=2022-05-30 |title=Dietary Phytoestrogen Intake and Cognitive Status in Southern Italian Older Adults |journal=Biomolecules |volume=12 |issue=6 |pages=760 |doi=10.3390/biom12060760 |issn=2218-273X |pmid=35740885 |pmc=9221352 |doi-access=free}}</ref> ==Related compounds== * [[Genistin]] is the 7-O-beta-D-[[glucoside]] of genistein.{{citation needed|date=September 2014}} * [[Wighteone]] can be described as 6-[[isopentenyl]] genistein * [[KBU2046]] under investigation for [[prostate cancer]].<ref>{{cite journal |last1=Xu |first1=Li |last2=Farmer |first2=Rebecca |last3=Huang |first3=Xiaoke |last4=Pavese |first4=Janet |last5=Voll |first5=Eric |last6=Irene |first6=Ogden |last7=Biddle |first7=Margaret |last8=Nibbs |first8=Antoinette |last9=Valsecchi |first9=Matias |last10=Scheidt |first10=Karl |last11=Bergan |first11=Raymond |year=2010 |title=Abstract B58: Discovery of a novel drug KBU2046 that inhibits conversion of human prostate cancer to a metastatic phenotype |journal=Cancer Prevention Research |volume=3 |issue=12 Supplement |pages=B58 |doi=10.1158/1940-6207.PREV-10-B58}}</ref><ref>{{cite press release |title=New Drug Stops Spread of Prostate Cancer |publisher=Northwestern University |date=April 3, 2012 |url=http://www.northwestern.edu/newscenter/stories/2012/04/prostate-cancer-new-drug.html |access-date=September 27, 2014}}</ref> * [[B43-genistein]], an anti-[[CD19]] antibody linked to genistein e.g. for [[leukemia]].<ref>{{cite journal |last1=Chen |first1=Chun-Lin |last2=Levine |first2=Alexandra |last3=Rao |first3=Asha |last4=O'Neill |first4=Karen |last5=Messinger |first5=Yoav |last6=Myers |first6=Dorothea E. |last7=Goldman |first7=Frederick |last8=Hurvitz |first8=Carole |last9=Casper |first9=James T. |last10=Uckun |first10=Fatih M. |year=1999 |title=Clinical Pharmacokinetics of the CD19 Receptor-Directed Tyrosine Kinase Inhibitor B43-Genistein in Patients with B-Lineage Lymphoid Malignancies |journal=The Journal of Clinical Pharmacology |volume=39 |issue=12 |pages=1248–55 |pmid=10586390 |doi=10.1177/00912709922012051 |s2cid=24445516}}</ref> ==See also== * [[(S)-Equol]] * [[Liquiritigenin]] * [[Menerba]] ==References== {{Reflist}} ==External links== {{Commons category}} * [https://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=5280961 Compound Summary at NCBI PubChem] * [http://www.zerobreastcancer.org/research/bcerc_factsheets_phytoestrogen_genistein.pdf Fact Sheet at Zerobreastcancer] {{Webarchive|url=https://web.archive.org/web/20210421133348/https://www.zerobreastcancer.org/research/bcerc_factsheets_phytoestrogen_genistein.pdf |date=2021-04-21 }} * {{usurped|1=[https://web.archive.org/web/20060927134713/http://www.phytochemicals.info/phytochemicals/genistein.php Information at Phytochemicals]}} * [https://web.archive.org/web/20140806174624/http://www.wikigenes.org/e/chem/e/5280961.html Chemical Compound Review at Wikigenes] * [https://link.springer.com/search?query=Genistein Description at Springer Link] * [http://www.cancer.gov/drugdictionary?cdrid=43214 Description at NCI Drug Dictionary] {{Phytoestrogens}} {{Isoflavones}} {{Navboxes | title = [[Pharmacodynamics]] | titlestyle = background:#ccccff | list1 = {{Cannabinoid receptor modulators}} {{Estrogen receptor modulators}} {{Estrogen-related receptor modulators}} {{Glycine receptor modulators}} {{Monoamine metabolism modulators}} {{PPAR modulators}} {{Thyroid hormone receptor modulators}} }} [[Category:3α-Hydroxysteroid dehydrogenase inhibitors]] [[Category:21-Hydroxylase inhibitors]] [[Category:Dietary supplements]] [[Category:Flavonoid antioxidants]] [[Category:GPER agonists]] [[Category:Isoflavones]] [[Category:Nutrients]] [[Category:Protein kinase inhibitors]] [[Category:Phytoestrogens]] [[Category:Glycine receptor antagonists]] [[Category:Selective ERβ agonists]] [[Category:Steroid sulfotransferase inhibitors]]
Genistein
に戻る。
ナビゲーション メニュー
個人用ツール
ログイン
名前空間
ページ
日本語
表示
閲覧
履歴表示
その他
検索
案内
索引
脳科学辞典について
最近完成した項目
編集履歴
執筆にあたって
引用の仕方
著作権について
免責事項
問い合わせ
各学会編集のオンライン用語辞典
About us (in English)
Twitter (BrainScienceBot)
ツール
リンク元
関連ページの更新状況
特別ページ
ページ情報
他のプロジェクト