「標的認識」の版間の差分

ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
編集の要約なし
53行目: 53行目:
 [[ショウジョウバエ]]の眼は8つの神経細胞(R1-R8)からなる単位の集合体として存在し、これらは高次視覚野である[[ラミナ]](lamina)、[[メダラ]](medulla)に線維を送るが、R1-R6、R7、R8の軸索はそれぞれシナプスを形成する標的が異なる(Rubinら、Zipurskyら)(図4)。この分子機構としては、 カドヘリン、プロトカドヘリンや[[受容体型チロシンフォスファターゼ]]、チロシンキナーゼ等が関与している事が示されている。また、標的野における[[グリア細胞]]の存在や標的に達するまでの軸索—軸索相互作用がこういった標的認識に重要である事も示されている<ref><pubmed>20399726</pubmed></ref>。  
 [[ショウジョウバエ]]の眼は8つの神経細胞(R1-R8)からなる単位の集合体として存在し、これらは高次視覚野である[[ラミナ]](lamina)、[[メダラ]](medulla)に線維を送るが、R1-R6、R7、R8の軸索はそれぞれシナプスを形成する標的が異なる(Rubinら、Zipurskyら)(図4)。この分子機構としては、 カドヘリン、プロトカドヘリンや[[受容体型チロシンフォスファターゼ]]、チロシンキナーゼ等が関与している事が示されている。また、標的野における[[グリア細胞]]の存在や標的に達するまでの軸索—軸索相互作用がこういった標的認識に重要である事も示されている<ref><pubmed>20399726</pubmed></ref>。  


 ショウジョウバエの体節の筋群はステレオティピックな配置をしており、それへの神経支配は[[神経管]]に存在する[[運動神経]]細胞からの線維が行う。この筋群への運動神経の標的認識の系は特異的な標的認識の機構を探る系として研究されてきた(図5)<ref><pubmed>8833454</pubmed></ref>。この過程には様々な軸索ガイダンスに関わる分子や神経細胞接着因子等が関与している。また、最後のところの[[神経筋接合部]]の形成についても分子レベルで研究が行われており、上記の分子の他、[[骨形成因子]] (BMP)なども関与している(文献を御願い致します)。
 ショウジョウバエの体節の筋群はステレオティピックな配置をしており、それへの神経支配は[[神経管]]に存在する[[運動神経]]細胞からの線維が行う。この筋群への運動神経の標的認識の系は特異的な標的認識の機構を探る系として研究されてきた(図5)<ref><pubmed>8833454</pubmed></ref>。この過程には様々な軸索ガイダンスに関わる分子や神経細胞接着因子等が関与している。また、最後のところの[[神経筋接合部]]の形成についても分子レベルで研究が行われており、上記の分子の他、[[骨形成因子]] (BMP)なども関与している<ref><pubmed>20832291</pubmed></ref>。


 またショウジョウバエの嗅覚系等の情報を受けるキノコ体(Mushroom body)ヘの標的認識についても研究が進められている。これにはマウスで明らかにされている様なトポグラフィックなマッピングの機構も関与しているようである<ref><pubmed>20554703</pubmed></ref>。
 またショウジョウバエの嗅覚系等の情報を受けるキノコ体(Mushroom body)ヘの標的認識についても研究が進められている。これにはマウスで明らかにされている様なトポグラフィックなマッピングの機構も関与しているようである<ref><pubmed>20554703</pubmed></ref>。
65行目: 65行目:
[[Image:辞典06.jpg|thumb|250px|'''図6 大脳皮質での領域特異的な標的認識'''<br>マウスのE14の脳において、[[体性感覚]]の情報は[[体性感覚野]]へ(SM)また、辺縁系からの情報は辺縁系皮質領域へ(PR)、それぞれ投射する。PRの領域には[[LAMP]]という細胞接着因子が発現している。この時期にLAMP陽性の皮質領域を感覚野へ移植すると辺縁系からの線維は移植された感覚野へ投射する様になる。]]  
[[Image:辞典06.jpg|thumb|250px|'''図6 大脳皮質での領域特異的な標的認識'''<br>マウスのE14の脳において、[[体性感覚]]の情報は[[体性感覚野]]へ(SM)また、辺縁系からの情報は辺縁系皮質領域へ(PR)、それぞれ投射する。PRの領域には[[LAMP]]という細胞接着因子が発現している。この時期にLAMP陽性の皮質領域を感覚野へ移植すると辺縁系からの線維は移植された感覚野へ投射する様になる。]]  


 かつて、[[wikipedia:Pasko Rakic|Pasko Rakic]]とDennis O'Learyの間で[[大脳皮質]]の発生に関して論争があった<ref><pubmed>22099452</pubmed></ref>。Protomap vs Protocortexと呼ばれたもので、端的に言えば[[大脳]]は領域ごとに発生の早い段階から遺伝的に決定されているという説と、そうではなくて大脳は他の神経細胞(領域)とつながったあとに領域ごとに差が出てくるという説である(文献御願いします)。Rakicの弟子であるPat Levittは、もし大脳皮質の領域が早い段階で決定されているならば、例えばある皮質領域に特異的にでている分子があるはずであると考え、それを探したところ[[辺縁系]]皮質領域に特異的にでている分子を得た。これは[[LAMP]]と呼ばれる細胞接着因子であるが、この分子の発現をマーカーとしてこれに皮質の移植の実験を組み合わせる事によって、辺縁系皮質領域は辺縁系からの線維を引き寄せる機構がある事が示されている(図6)<ref><pubmed>1570290</pubmed></ref>。この標的認識に関わる分子はLAMPそのものである可能性もある。
 かつて、[[wikipedia:Pasko Rakic|Pasko Rakic]]とDennis O'Learyの間で[[大脳皮質]]の発生に関して論争があった<ref><pubmed>22099452</pubmed></ref>。Protomap vs Protocortexと呼ばれたもので、端的に言えば[[大脳]]は領域ごとに発生の早い段階から遺伝的に決定されているという説と、そうではなくて大脳は他の神経細胞(領域)とつながったあとに領域ごとに差が出てくるという説である<ref><pubmed>22099452</pubmed></ref>。Rakicの弟子であるPat Levittは、もし大脳皮質の領域が早い段階で決定されているならば、例えばある皮質領域に特異的にでている分子があるはずであると考え、それを探したところ[[辺縁系]]皮質領域に特異的にでている分子を得た。これは[[LAMP]]と呼ばれる細胞接着因子であるが、この分子の発現をマーカーとしてこれに皮質の移植の実験を組み合わせる事によって、辺縁系皮質領域は辺縁系からの線維を引き寄せる機構がある事が示されている(図6)<ref><pubmed>1570290</pubmed></ref>。この標的認識に関わる分子はLAMPそのものである可能性もある。


=== 神経細胞内での特定のコンパートメントへの標的認識===  
=== 神経細胞内での特定のコンパートメントへの標的認識===  
79行目: 79行目:
[[Image:辞典08.jpg|thumb|250px|'''図8 小脳への下オリーブ核からの投射'''<br>延髄の下オリーブ核(右側)にはSC1/DM-GRASP/BEN/ALCAM陽性のところ(黒色)と陰性のところがある。これらSC1/DM-GRASP/BEN/ALCAM陽性の領域の神経細胞はSC1/DM-GRASP/BEN/ALCAM陽性のプルキンエ細胞の存在する小脳皮質領域(左側、黒色)に投射する。SC1/DM-GRASP/BEN/ALCAM陽性の領域は小脳皮質においては矢状断面に沿ったストライプ状に配列している。]]  
[[Image:辞典08.jpg|thumb|250px|'''図8 小脳への下オリーブ核からの投射'''<br>延髄の下オリーブ核(右側)にはSC1/DM-GRASP/BEN/ALCAM陽性のところ(黒色)と陰性のところがある。これらSC1/DM-GRASP/BEN/ALCAM陽性の領域の神経細胞はSC1/DM-GRASP/BEN/ALCAM陽性のプルキンエ細胞の存在する小脳皮質領域(左側、黒色)に投射する。SC1/DM-GRASP/BEN/ALCAM陽性の領域は小脳皮質においては矢状断面に沿ったストライプ状に配列している。]]  


 [[小脳の神経回路]]については昔から精力的に研究が行われてきた。小脳に入ってくる2つの主な入力は延髄の下オリーブ核からの登上線維と橋の橋核からの苔状線維であるが、この2つは前者がプルキンエ細胞、後者が[[顆粒細胞]]とそれぞれ標的が異なる(文献御願いします)。これらの線維が小脳皮質の発達に伴ってどうやって小脳皮質まできて、どういう発達過程を示すかについては詳細な記載がされているが(例えばConstantino SoteloやCarol Masonら)(文献御願いします)、これらの標的認識が分子レベルでどうなっているかについてはまだ明らかになっていない(一つの登上線維が一つのプルキンエ細胞とシナプスを作るようになるリファイメントの過程については日本の狩野らの仕事により分子機構が明らかにされてきている)。
 [[小脳の神経回路]]については昔から精力的に研究が行われてきた。小脳に入ってくる2つの主な入力は延髄の下オリーブ核からの登上線維と橋の橋核からの苔状線維であるが、この2つは前者がプルキンエ細胞、後者が[[顆粒細胞]]とそれぞれ標的が異なる(文献御願いします)。これらの線維が小脳皮質の発達に伴ってどうやって小脳皮質まできて、どういう発達過程を示すかについては詳細な記載がされているが(例えばConstantino SoteloやCarol Masonら)<ref><pubmed>9509518</pubmed></ref>,<ref><pubmed>9509519</pubmed></ref>、これらの標的認識が分子レベルでどうなっているかについてはまだ明らかになっていない(一つの登上線維が一つのプルキンエ細胞とシナプスを作るようになるリファイメントの過程については日本の狩野らの仕事により分子機構が明らかにされてきている)。


 Constantine Soteloは登上線維のプルキンエ細胞ヘの標的認識に関わる分子に非常に興味を持っていて、彼は小脳のプルキンエ細胞は矢状断面でグループを作り、それに下オリーブ核からの登上線維がトポグラフィックに標的認識することに注目、小脳で矢状断面に沿ったストライプ状に発現する細胞接着因子を探した。そのうちの一つが細胞接着因子の[[Activated leukocyte cell adhesion molecule]] (ALCAMあるいはSC1/DM-GRASP/BEN)である。しかしながら、この分子が登上線維とプルキンエ細胞のマッチングに関与しているかどうかの検証はなされていない(図8)<ref><pubmed>8627367</pubmed></ref>。
 Constantine Soteloは登上線維のプルキンエ細胞ヘの標的認識に関わる分子に非常に興味を持っていて、彼は小脳のプルキンエ細胞は矢状断面でグループを作り、それに下オリーブ核からの登上線維がトポグラフィックに標的認識することに注目、小脳で矢状断面に沿ったストライプ状に発現する細胞接着因子を探した。そのうちの一つが細胞接着因子の[[Activated leukocyte cell adhesion molecule]] (ALCAMあるいはSC1/DM-GRASP/BEN)である。しかしながら、この分子が登上線維とプルキンエ細胞のマッチングに関与しているかどうかの検証はなされていない(図8)<ref><pubmed>8627367</pubmed></ref>。
131

回編集

案内メニュー