「アドレナリン」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
5行目: 5行目:
<br> '''「発見と用語」'''  
<br> '''「発見と用語」'''  


1893年、George Oliver(イギリス)は副腎(Adrenal)に薬理学的に劇的な効果を持つ物質が含まれることを発見した<ref name="ref1">'''G Oliver, EA Schäfer''' <br> On the physiological action of extract of the suprarenal capsules <br>''J. Physiol. Lond.'':1894;16;i-iv</ref>。1897年、John Abel (アメリカ)は副腎から粗抽出物を調製、これをエピネフリンと呼んだが<ref name="ref2">''' JJ Abel''' <br> On epinephrin, the active constituent of the suprarenal capsule and its compounds <br>'' Proc. Am. Phys. Soc.'': 1898; 3­4; 3­5</ref>、これには生理活性はなかった<ref name="ref3"><pubmed> 10678871</pubmed></ref>。その後、1901年、高峰と上中は副腎から生理活性物質を精製した<ref name="ref4">''' J Takamine '''<br> The isolation of the active principle of the suprarenal gland <br>''J. Physiol. Lond.'':1901;27;30P-39P </ref>。これをParke, Davis &amp; CoはAdrenalinという名前で販売した<ref name="ref3" />。  
1893年、George Oliver(イギリス)は副腎(Adrenal)に薬理学的に劇的な効果を持つ物質が含まれることを発見した<ref name="ref1">'''G Oliver, EA Schäfer''' <br> On the physiological action of extract of the suprarenal capsules <br>''J. Physiol. Lond.'':1894;16;i-iv</ref>。1897年、John Abel (アメリカ)は副腎から粗抽出物を調製、これをエピネフリンと呼んだが<ref name="ref2">''' JJ Abel''' <br> On epinephrin, the active constituent of the suprarenal capsule and its compounds <br>'' Proc. Am. Phys. Soc.'': 1898; 3­4; 3­5</ref>、これには生理活性がなかった<ref name="ref3"><pubmed> 10678871</pubmed></ref>。その後、1901年、高峰譲吉と上中啓三は副腎から生理活性物質を精製した<ref name="ref4">''' J Takamine '''<br> The isolation of the active principle of the suprarenal gland <br>''J. Physiol. Lond.'':1901;27;30P-39P </ref>。これをParke, Davis &amp; CoはAdrenalineという名前で販売した<ref name="ref3" />。  


 現在、アドレナリンとエピネフリンという呼称については、国により使用頻度が異なる。歴史的にはアドレナリンの方が正しい呼称と考えられ、欧州ではアドレナリンの方が一般的である。しかし、米国の、特に医学分野では、John Abelの影響の名残でエピネフリンの方が一般的である。日本では2006年の第十五改正日本薬局方よりアドレナリンが一般名称となった。  
 現在、アドレナリンとエピネフリンという呼称については、国により使用頻度が異なる。歴史的にはアドレナリンの方が正しい呼称と考えられ、欧州ではアドレナリンの方が一般的である。しかし、米国の、特に医学分野では、John Abelの影響の名残でエピネフリンの方が一般的である。日本では2006年の第十五改正日本薬局方よりアドレナリンが一般名称となった。  
26行目: 26行目:
*'''芳香族アミノ酸脱炭酸酵素 aromatic L-amino acid decarboxylase (AADC):'''EC 4.1.1.28。L-DOPAよりドーパミンを合成する。他に、この酵素は5-hydroxytryptophanからセロトニン(5-hydroxytryptamine, 5-HT)を合成する反応も触媒する。Pyridoxal phosphateが必要。全てのカテコールアミン産生細胞に存在する<ref name="ref9"><pubmed> 8897471</pubmed></ref>。  
*'''芳香族アミノ酸脱炭酸酵素 aromatic L-amino acid decarboxylase (AADC):'''EC 4.1.1.28。L-DOPAよりドーパミンを合成する。他に、この酵素は5-hydroxytryptophanからセロトニン(5-hydroxytryptamine, 5-HT)を合成する反応も触媒する。Pyridoxal phosphateが必要。全てのカテコールアミン産生細胞に存在する<ref name="ref9"><pubmed> 8897471</pubmed></ref>。  
*'''ドーパミンβ水酸化酵素 Dopamine β-hydroxylase:'''EC 1.14.2.1。ドーパミンよりノルアドレナリンを合成する。アスコルビン酸、O<sub>2</sub>、Cu<sup>2+</sup>が必要。ノルアドレナリン、アドレナリン産生細胞のシナプス小胞の中に存在し、シナプス小胞に取り込まれたドーパミンをノルアドレナリンに変換する<ref name="ref10"><pubmed> 6998654 </pubmed></ref>。  
*'''ドーパミンβ水酸化酵素 Dopamine β-hydroxylase:'''EC 1.14.2.1。ドーパミンよりノルアドレナリンを合成する。アスコルビン酸、O<sub>2</sub>、Cu<sup>2+</sup>が必要。ノルアドレナリン、アドレナリン産生細胞のシナプス小胞の中に存在し、シナプス小胞に取り込まれたドーパミンをノルアドレナリンに変換する<ref name="ref10"><pubmed> 6998654 </pubmed></ref>。  
*'''フェニルエタノールアミン-N-メチル基転移酵素 phenylethanolamine N-methyltransferase(PNMT):'''EC 2.1.1.28。ノルアドレナリンのアミノにメチル基を付加し、アドレナリンを生合成する。メチル基のドナーとしてS-adenosylmethioneが必要。ヒトでは一つの遺伝子があり(Gene ID 5409)、転写産物は副腎髄質に多く、心臓、および脳幹にも存在する<ref name="ref11"><pubmed> 12438093 </pubmed></ref>。ノルアドレナリンからアドレナリンの生合成は、ノルアドレナリンが合成された顆粒内で起きると考えられている<ref name="ref12"><pubmed> 4615087</pubmed></ref>
*'''フェニルエタノールアミン-N-メチル基転移酵素 phenylethanolamine N-methyltransferase(PNMT):'''EC 2.1.1.28。ノルアドレナリンのアミノにメチル基を付加し、アドレナリンを生合成する。メチル基のドナーとしてS-adenosylmethioneが必要。ヒトでは一つの遺伝子があり(Gene ID 5409)、転写産物は副腎髄質に多く、心臓、および脳幹にも存在する<ref name="ref11"><pubmed> 12438093 </pubmed></ref>。PNMTは細胞質に局在するが、顆粒内にもあるとの説もある<ref name="ref12"><pubmed> 4615087</pubmed></ref>。そのため、アドレナリンの生合成が、細胞質で起きるのか、ノルアドレナリンが合成された顆粒内で起きるのかについては、まだはっきりと分かっていない。


<br>  
<br>  
65行目: 65行目:
'''「受容体」'''  
'''「受容体」'''  


アドレナリンはノルアドレナリンと共にアドレナリン受容体(adrenergic receptorまたはadrenoceptor)に結合し活性化する。αおよびβのサブファミリーからなる。より細かくは、α<sub>1A</sub>-α<sub>1D</sub>、α<sub>2A</sub>-α<sub>2C</sub>、β<sub>1</sub>、β<sub>2</sub>、β<sub>3</sub>、から構成されている。いずれも三量体Gタンパク質共役型の受容体である。α<sub>1</sub>はG<sub>q</sub>、α<sub>2</sub>はG<sub>i</sub>、β<sub>1</sub>-β<sub>3</sub>はG<sub>s</sub>と共役している。  末梢神経系において、アドレナリンは、低濃度ではβ<sub>1</sub>およびβ<sub>2</sub>アドレナリン受容体に作用し、高濃度ではα<sub>1</sub>を介した作用が主となる。(ノルアドレナリンはα<sub>1</sub>およびβ<sub>1</sub>アドレナリン受容体のアゴニストとして作用する。)  
アドレナリンはノルアドレナリンと共にアドレナリン受容体(adrenergic receptorまたはadrenoceptor)に結合し活性化する。αおよびβのサブファミリーからなる。より細かくは、α<sub>1A</sub>-α<sub>1D</sub>、α<sub>2A</sub>-α<sub>2C</sub>、β<sub>1-</sub>β<sub>3</sub>、から構成されている。いずれも三量体Gタンパク質共役型の受容体である。α<sub>1</sub>はG<sub>q</sub>、α<sub>2</sub>はG<sub>i</sub>、β<sub>1</sub>-β<sub>3</sub>はG<sub>s</sub>と共役している。  末梢神経系において、アドレナリンは、低濃度ではβ<sub>1</sub>およびβ<sub>2</sub>アドレナリン受容体に作用し、高濃度ではα<sub>1</sub>を介した作用が主となる。(ノルアドレナリンはα<sub>1</sub>およびβ<sub>1</sub>アドレナリン受容体のアゴニストとして作用する。)  


<br>  
<br>  


<references />
<references />
63

回編集