「電気魚」の版間の差分

338 バイト追加 、 2012年6月25日 (月)
編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
== 電気魚とは  ==
== 電気魚とは  ==


電気を外部に放電するための電気器官<ref name="ys1" />'''菅原美子'''<br>題<br></ref>を持つ魚。ほとんどの電気魚が電気を受容するための電気受容器<ref name="ys1" />'''菅原美子'''<br>題<br></ref>を併せ持つ。放電電圧数V以下の弱電気魚と数十〜数百ボルトの強電気魚がいる。弱電気魚は、放電により体の周りに設定する電場を用い環境の様子を知る電気定位行動<ref>'''J Bastian,'''<br>"Electrolocation" In Electrolocation (ed T.H.Bullock & W.Heiligenberg)<br>ppxxx-xxx:1986 </ref>や、放電を同種あるいは異種間でのコミュニケーションに利用する電気コミュニケーション<ref><pubmed>10210663</pubmed></ref>などを行う。これらの行動を司る中枢神経機構はよく理解されている<ref>'''Editor1 Editor2 (eds)'''<br>Electroreception:Year</ref>。強電気魚は、強力な放電で被捕食魚を麻痺させたり捕食者を威嚇したりする<ref>'''A chapter from Peter Moler's book'''</ref>。強電気魚は弱電気魚を元に進化したもので、弱電気魚と同じ弱い電気の発電と受容の能力も併せ持つ。  
電気を外部に放電するための電気器官<ref name=ref1>'''菅原美子1'''</ref>を持つ魚。ほとんどの電気魚が電気を受容するための電気受容器<ref name=ref2>'''菅原美子2'''</ref>を併せ持つ。放電電圧数V以下の弱電気魚と数十〜数百Vの強電気魚がいる。弱電気魚は、電気器官からの放電により体の周りに設定する電場を用い環境の様子を知る電気定位行動<ref>'''J Bastian,'''<br>"Electrolocation" In Electrolocation (ed T.H.Bullock & W.Heiligenberg)<br>ppxxx-xxx:1986 </ref>や、放電を同種あるいは異種間でのコミュニケーションに利用する電気コミュニケーション<ref><pubmed>10210663</pubmed></ref>などの電気的行動を行う。これらの行動を司る中枢神経機構はよく理解されている<ref>'''Editor1 Editor2 (eds)'''<br>Electroreception:Year</ref>。強電気魚は、強力な放電で被捕食魚を麻痺させたり捕食者を威嚇したりする<ref>'''A chapter from Peter Moler's book'''</ref>。強電気魚は弱電気魚を元に進化したもので、弱電気魚と同じ弱い電気の発電と受容の能力も併せ持つ。  


== 電気器官  ==
== 電気器官  ==


発電器官ともいう。電気器官は多数の発電細胞 (electrocyte) から成る興奮性の器官で、種類によって様々な部位にある(図)。発電細胞は筋繊維由来の興奮性細胞であるが収縮機能は発生過程に失う。電気的興奮を示す部位が、細胞膜上で偏って分布することで細胞外に電場が発生する(図?)。発電の指令は延髄にあるペースメーカー核(またはコマンド核)で生じ、脊髄の電気運動ニューロンを経てすべての発電細胞に同時に伝達される<ref>'''Encyclopedia book Chapter'''</ref>。直列に配置された発電細胞が同時発火するために電気器官全体で高い電圧を得る。強電気魚では, 多数の発電細胞が直列に配置され高電圧(デンキウナギでは600V)、また並列に配置されることにより大電流 (シビレエイでは20A) を発生する。このようにして発生した電気器官放電 (electric organ discharge) は、持続時間 0.1 ~ 数ミリ秒と短いが、10 ~ 1500 Hz の頻度で昼夜を問わず休みなく継続する。電気コミュニケーションに使われる電気信号は、発電波形や発電頻度の変化として現れる。  
発電器官ともいう<ref name=ref2 />。電気器官は多数の発電細胞 (electrocyte) から成る興奮性の器官で、種類によって様々な部位にある(図)。発電細胞は筋繊維由来の興奮性細胞であるが収縮機能は発生過程に失う。電気的興奮を示す部位が、細胞膜上で偏って分布することで細胞外に電場が発生する(図?)。発電の指令は延髄にあるペースメーカー核(またはコマンド核)で生じ、脊髄の電気運動ニューロンを経てすべての発電細胞に同時に伝達される<ref>'''Encyclopedia book Chapter'''</ref>。直列に配置された発電細胞が同時発火するために電気器官全体で高い電圧を得る。強電気魚では, 多数の発電細胞が直列に配置され高電圧(デンキウナギでは600V)、また並列に配置されることにより大電流 (シビレエイでは20A) を発生する。このようにして発生した電気器官放電 (electric organ discharge) は、持続時間 0.1 ~ 数ミリ秒と短いが、10 ~ 1500 Hz の頻度で昼夜を問わず休みなく継続する。電気コミュニケーションに使われる電気信号は、発電波形や発電頻度の変化として現れる。  


== 電気受容器  ==
== 電気受容器  ==
19行目: 19行目:
=== 電気定位  ===
=== 電気定位  ===


電気魚が周囲に作った電場に、水とは電気的性質の異なる物体が侵入すると電場が乱れる。電気定位とは、電気魚が電場の乱れを検出することにより物体の位置、距離<ref><pubmed> 9804420 </pubmed></ref>、大きさ、形、などの情報を得る行動である。電気魚は物体の電気抵抗成分と電気容量成分を区別することができ、この能力は視覚における色覚に対比される<ref>'''Gerhards book chapter</ref>。  
電気魚が周囲に作った電場に、水とは電気的性質の異なる物体が侵入すると電場が乱れる。電気定位とは、電気魚が電場の乱れを検出することにより物体の位置、距離、大きさ、形<ref><pubmed> 15477023 </pubmed></ref>などの情報を得る行動である。電気魚は物体の電気抵抗成分と電気容量成分を区別することができ、この能力は視覚における色覚に対比される<ref><pubmed>16645886</pubmed></ref>。  


=== 種と性の認識  ===
=== 種と性の認識  ===
27行目: 27行目:
=== 混信回避行動  ===
=== 混信回避行動  ===


自己の発電と他の魚の発電が時間的に重なると混信が起こり電気定位の能力が阻害される。混信を回避するために自己の発電のタイミングを変化させるのが混信回避行動 (jamming avoidance response)である<ref>'''弱電気魚の渾身回避行動'''</ref>。短いパルスを散発的に発する電気魚では、相手魚の発電時間を予測し、それに重ならないよう自らの発電の瞬間を調節する。パルスが高頻度で発生し連続波形(正弦波状)の発電をする電気魚では、発電のタイミングを変化させても相手魚とのパルスの重なりを避けることはできない。このような電気魚では、自己の発電周波数を相手魚のそれから遠ざける方向に変化させる。その結果、周波数差がより大きくなり混信が回避される。相手魚の周波数が自己の周波数より高いか低いかによって自己の周波数を下げるか上げるかを決定するが、その計算アルゴリズムと神経機構は以下のようなものである。 (1) 自己と相手の発電の和信号を感覚信号としてサンプルする。ペースメーカー核にエフェレンスコピーとして存在する自己発電周波数の情報は使わない。(2) 和信号の振幅変調の経時的変化を検出。(3) 和信号の位相を検出。(4) 体の各部からの位相差を検出。(5) 相手魚の周波数の高低によって異なる (2)と(4) の時間パタンを読み出す。(6) (5)の計算結果が示す空間的曖昧さを (2) の結果と空間加重することによって解決する。(7) 神経計算の最終結果はペースメーカー核へ投射信号として提示される。(1)の過程は振幅型と位相型の電気受容器、(2) は脳の振幅型ニューロン, (3)は脳のフェーズロックニューロンによってコードされる。(4) の過程は (3) のニューロン間の活動電位の発生時間差に感受性のある符合一致検出回路が実行する。(5)の過程はこれらニューロンが収れん投射するニューロンが実行する。延髄の電気感覚側線葉と中脳の半円堤に分布するこれらの神経回路は (6)に対応するものを除いて神経生理学的解剖学的のよく理解されている。
自己の発電と他の魚の発電が時間的に重なると混信が起こり電気定位の能力が阻害される。混信を回避するために自己の発電のタイミングを変化させるのが混信回避行動 (jamming avoidance response)である<ref>'''弱電気魚の渾身回避行動'''</ref>。短いパルスを散発的に発する電気魚では、相手魚の発電時間を予測し、それに重ならないよう自らの発電の瞬間を調節する<ref>'''pulsetypeJAR'''</ref>。パルスが高頻度で発生し連続波形(正弦波状)の発電をする電気魚では、発電のタイミングを変化させても相手魚とのパルスの重なりを避けることはできない。このような電気魚では、自己の発電周波数を相手魚のそれから遠ざける方向に変化させる。その結果、周波数差がより大きくなり混信が回避される。相手魚の周波数が自己の周波数より高いか低いかによって自己の周波数を下げるか上げるかを決定するが、その計算アルゴリズムと神経機構は以下のようなものである。 (1) 自己と相手の発電の和信号を感覚信号としてサンプルする。ペースメーカー核にエフェレンスコピーとして存在する自己発電周波数の情報は使わない。(2) 和信号の振幅変調の経時的変化を検出。(3) 和信号の位相を検出。(4) 体の各部からの位相差を検出。(5) 相手魚の周波数の高低によって異なる (2)と(4) の時間パタンを読み出す。(6) (5)の計算結果が示す空間的曖昧さを (2) の結果と空間加重することによって解決する。(7) 神経計算の最終結果はペースメーカー核へ投射信号として提示される。(1)の過程は振幅型と位相型の電気受容器、(2) は脳の振幅型ニューロン, (3)は脳のフェーズロックニューロンによってコードされる。(4) の過程は (3) のニューロン間の活動電位の発生時間差に感受性のある符合一致検出回路が実行する。(5)の過程はこれらニューロンが収れん投射するニューロンが実行する。延髄の電気感覚側線葉と中脳の半円堤に分布するこれらの神経回路は (6)に対応するものを除いて神経生理学的解剖学的のよく理解されている。系統的に遠い電気魚 EigenmanniaとGymnarchusは、混信回避行動を独立に進化させたにも関わらず、その神経回路には強い類似性がある<ref><pubmed>19799509</pubmed></ref>。系統的に遠い電気魚EigenmanniaとGymnarchusで独立に進化した。


<br>  
<br>  
121

回編集