「トポグラフィックマッピング」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
12行目: 12行目:
 感覚系のトポグラフィックマッピングには大きく分けて2つの過程がある。一つは神経細胞の軸索が標的にたどり着き標的内でトポグラフィックに配置する[[神経活動]]に依存しない(様々な標的認識分子による)メカニズムで、もう一つはその後に行われる標的内での神経活動依存性の配置形成の(ひいてはシナプス形成の)リファインメントの過程である(神経活動依存性ファインチューニング)。このマップの形成は発達段階において起こり、その形成時期は神経系の可塑性の能力の有無とも関係する。
 感覚系のトポグラフィックマッピングには大きく分けて2つの過程がある。一つは神経細胞の軸索が標的にたどり着き標的内でトポグラフィックに配置する[[神経活動]]に依存しない(様々な標的認識分子による)メカニズムで、もう一つはその後に行われる標的内での神経活動依存性の配置形成の(ひいてはシナプス形成の)リファインメントの過程である(神経活動依存性ファインチューニング)。このマップの形成は発達段階において起こり、その形成時期は神経系の可塑性の能力の有無とも関係する。


 高等動物の感覚系において、外界から入力される感覚情報は脳内の特定の領域内において2次元上の神経細胞の[[発火]]パターンへと変換され、これが感覚情報の処理の基盤となる。例えば視覚の場合一つの重要な情報は位置情報であるが、[[網膜]]の中のある視細胞がその受け持つ視覚フィールド内のある位置における情報を受け取り、網膜のそれぞれの[[視細胞]]の情報は脳の特異的な細胞へ伝達される。そうすることによって、網膜内での位置関係(つまりは視覚フィールドにおける位置関係)が脳内での位置関係に転換され、視覚フィールドの空間における位置情報を視覚野で認識することができる。これをするためにはそれぞれの視細胞につながる網膜[[神経節]]細胞の軸索が視覚系においてトポグラフィックにターゲッティングする事が必要となる。これがトポグラフィックマッピングであり、その結果、脳内にトポグラフィックなマップができる。さらに両眼視ができる動物では、両方の眼から入った視野内の同じ地点からの情報は脳内の似たような領域に集束する必要がある。それについてもトポグラフィックなマッピングが必要で、それによって形成された両眼視によってさらに立体視も可能となる。また、視覚によって得られた情報を認知するにあたって視覚野から脳内での行き先によって認知される内容が異なるので(例えばwhatとhow)、この基本に視覚野でのトポグラフィックマッピングがあるとも考えられる([[嗅覚系]]ではある特定の匂いがそれによって引き起こされる特定の行動に結びつく基本にトポグラフィックマップがある。詳しくは嗅覚系の項を参照のこと)。先に述べたように視覚系においても網膜の神経細胞の活動なしに起こる過程と網膜の神経細胞の活動性に依存して起こる過程がある。
 高等動物の感覚系において、外界から入力される感覚情報は脳内の特定の領域内において2次元上の神経細胞の[[発火]]パターンへと変換され、これが感覚情報の処理の基盤となる。例えば視覚の場合一つの重要な情報は位置情報であるが、[[網膜]]の中のある視細胞がその受け持つ視覚フィールド内のある位置における情報を受け取り、網膜のそれぞれの[[視細胞]]の情報は脳の特異的な細胞へ伝達される。そうすることによって、網膜内での位置関係(つまりは視覚フィールドにおける位置関係)が脳内での位置関係に転換され、視覚フィールドの空間における位置情報を視覚野で認識することができる。これをするためにはそれぞれの視細胞につながる網膜[[神経節]]細胞の軸索が視覚系においてトポグラフィックに投射、配置する事が必要となる。これがトポグラフィックマッピングであり、その結果、脳内にトポグラフィックなマップができる。さらに両眼視ができる動物では、両方の眼から入った視野内の同じ地点からの情報は脳内の似たような領域に集束する必要がある。それについてもトポグラフィックなマッピングが必要で、それによって形成された両眼視によってさらに立体視も可能となる。また、視覚によって得られた情報を認知するにあたって視覚野から脳内での行き先によって認知される内容が異なるので(例えばwhatとhow)、この基本に視覚野でのトポグラフィックマッピングがあるとも考えられる([[嗅覚系]]ではある特定の匂いがそれによって引き起こされる特定の行動に結びつく基本にトポグラフィックマップがある。詳しくは嗅覚系の項を参照のこと)。先に述べたように視覚系においても網膜の神経細胞の活動なしに起こる過程と網膜の神経細胞の活動性に依存して起こる過程があり、この両者によって発達段階において視覚系のマップは形成される。


==分子機構==
==分子機構==
21行目: 21行目:


===化学親和説の提唱===
===化学親和説の提唱===
 脳内におけるトポグラフィックなマップを示唆する古典的な実験としては1940-50年代の[[wikipedia:ja:ロジャー・スペリー|Roger Sperry]]による[[wikipedia:ja:カエル|カエル]]の目を180度回転した後の神経再生によってカエルの視覚がどうなるかを見たものがある。カエルの目を180度回すとカエルは上下逆転した形で視覚情報を認識するようになる。これは網膜神経節細胞の軸索が再生する際に元々つながっていた標的につながることによって、回転した後の網膜の上と下に位置する視細胞からの位置情報が脳内での位置では上下逆転するために起こる。Sperryはこういった一連の視覚系の操作の実験の結果から、投射する軸索と標的の細胞に分子のタグがついていて、その間の特異的相互作用によって神経細胞間の結合が決定されトポグラフィックマップの形成に関与すると提唱した<ref><pubmed>14077501</pubmed></ref>。また、こういった分子のタグは軸索と標的の両方で相補的な濃度勾配を形成していて、それでコネクションの形成される位置が決定されるのではないかと推測した(詳しくは[[化学親和説]]の項を参照されたい)。  
 脳内におけるトポグラフィックなマップを示唆する古典的な実験としては1940-50年代の[[wikipedia:ja:ロジャー・スペリー|Roger Sperry]]による[[wikipedia:ja:カエル|カエル]]の目を180度回転した後の神経再生によってカエルの視覚がどうなるかを見たものがある。カエルの目を180度回すとカエルは上下逆転した形で視覚情報を認識するようになる。これは網膜神経節細胞の軸索が再生する際に元々つながっていた標的につながることによって、回転した後の網膜の上と下に位置する視細胞からの位置情報が脳内での位置では上下逆転するために起こる。Sperryはこういった一連の視覚系の操作の実験の結果から、投射する軸索と標的の細胞に分子のタグがついていて、その間の特異的相互作用によって神経細胞間の結合が決定されトポグラフィックマップの形成に関与すると提唱した<ref><pubmed>14077501</pubmed></ref>。また、こういった分子のタグは軸索と標的の両方で相補的な濃度勾配を形成していて、それで最終的にコネクションの形成される位置が決定されるのではないかと推測した(詳しくは[[化学親和説]]の項を参照されたい)。  


===化学親和の実体===
===化学親和の実体===
28行目: 28行目:
 [[wikipedia:ja:ニワトリ|ニワトリ]]の眼において耳側と鼻側の網膜神経節細胞はそれぞれ[[視蓋]]の前側と後側に軸索を送り、眼の中の耳鼻軸に沿った位置情報は視蓋の中で前後軸として保存される(図2)。これは眼の中で網膜神経節細胞に耳側と鼻側に軸に沿った分子の濃度勾配があり、それに対応する分子の濃度勾配が標的である視蓋の前後軸にもあり、その相互作用によって、それぞれの網膜神経節細胞の軸索が視蓋で停止する場所が決定されると考えられた。
 [[wikipedia:ja:ニワトリ|ニワトリ]]の眼において耳側と鼻側の網膜神経節細胞はそれぞれ[[視蓋]]の前側と後側に軸索を送り、眼の中の耳鼻軸に沿った位置情報は視蓋の中で前後軸として保存される(図2)。これは眼の中で網膜神経節細胞に耳側と鼻側に軸に沿った分子の濃度勾配があり、それに対応する分子の濃度勾配が標的である視蓋の前後軸にもあり、その相互作用によって、それぞれの網膜神経節細胞の軸索が視蓋で停止する場所が決定されると考えられた。


 [[wikipedia:ja:チュービンゲン|チュービンゲン]]の[[wikipedia:de:Friedrich Bonhoeffer|Friedrich Bonhoeffer]]のグループは生化学的に視蓋での物質的基盤を明らかにすべく以下の様な実験を行った。彼らは、もし、視蓋に前後軸で濃度勾配を呈して発現している物質があってそれが耳側と鼻側の網膜神経節細胞の軸索のターゲッティングに重要であるならば、視蓋の前側と後側から調整した膜画分に対する耳側と鼻側の網膜神経節細胞の軸索の反応が変わるであろうと考え、これらの膜画分をインビトロでの基質としてストライプ状に配置した(ストライプアッセイ)。その上で網膜の神経節細胞を培養すると、耳側の細胞の軸索は前側から調整した膜画分の上を好んで成長するのに対して、鼻側の細胞の軸索は前側と後側からの画分で差を示さない事、そして、前側と後側のストライプをそれぞれ熱処理することによって、耳側の軸索は特に前側の膜画分を好むわけではなく、実は後側の膜画分を避ける事が示された(図3)。この事は視蓋の後側に高く前側に低く発現されている物質があり、それが耳側で強く発現し鼻側で弱く発現する分子によって認識される事によって網膜神経節細胞の軸索の視蓋内での位置が決まるという事を示唆する(図2)<ref><pubmed>3503693</pubmed></ref><ref><pubmed>3503703</pubmed></ref>。 このアッセイを利用してBonhoefferのグループは1990年に生化学的にニワトリの視蓋の後側に発現しているトポグラフィックマッピングに関与している分子を精製した<ref><pubmed>2171592</pubmed></ref>。RAGSと呼ばれた25kDaのこの分子はPI-PLC処理によって膜から外れることから[[GPIリンカー|GPI結合性]]の膜結合タンパク質であることがわかっていた。
 [[wikipedia:ja:チュービンゲン|チュービンゲン]]の[[wikipedia:de:Friedrich Bonhoeffer|Friedrich Bonhoeffer]]のグループは生化学的に視蓋での物質的基盤を明らかにすべく以下の様な実験を行った。彼らは、もし、視蓋に前後軸で濃度勾配を呈して発現している物質があってそれが耳側と鼻側の網膜神経節細胞の軸索の投射に重要であるならば、視蓋の前側と後側から調整した膜画分に対する耳側と鼻側の網膜神経節細胞の軸索の反応が変わるであろうと考え、これらの膜画分をインビトロでの基質としてストライプ状に配置した(ストライプアッセイ)。その上で網膜の神経節細胞を培養すると、耳側の細胞の軸索は前側から調整した膜画分の上を好んで成長するのに対して、鼻側の細胞の軸索は前側と後側からの画分で差を示さない事、そして、前側と後側のストライプをそれぞれ熱処理することによって、耳側の軸索は特に前側の膜画分を好むわけではなく、実は後側の膜画分を避ける事が示された(図3)。この事は視蓋の後側に高く前側に低く発現されている物質があり、それが耳側で強く発現し鼻側で弱く発現する分子によって認識される事によって網膜神経節細胞の軸索の視蓋内での位置が決まるという事を示唆する(図2)<ref><pubmed>3503693</pubmed></ref><ref><pubmed>3503703</pubmed></ref>。 このアッセイを利用してBonhoefferのグループは1990年に生化学的にニワトリの視蓋の後側に発現しているトポグラフィックマッピングに関与している分子を精製した<ref><pubmed>2171592</pubmed></ref>。RAGSと呼ばれた25kDaのこの分子はPI-PLC処理によって膜から外れることから[[GPIリンカー|GPI結合性]]の膜結合タンパク質であることがわかっていた。


===クローニングによる分子同定===
===クローニングによる分子同定===
50行目: 50行目:
 [[外側膝状体]]と大脳皮質の視覚野でもトポグラフィックマップは形成されているがその分子メカニズムは視蓋/上丘ほどは明らかにされていない。ここで一つ注意しておきたいのは上記のニワトリの系は両眼視をする系ではないということである。したがって、Eph-エフリンによる化学親和のメカニズムは対側に投射する軸索に当てはまるものである。マウスではヒトほど顕著ではないものの、両眼視をすることができ、したがって外側膝状体では対側の眼からの軸索の投射する場所と同側の眼からの軸索の投射する場所が存在し、結果として同じ視野フィールドからの情報が同じ側の視覚中枢に集束することになる。この場合、対側からの投射についてはニワトリと同じ様なメカニズムが当てはまると考えられるが、同側からの投射については対側と同じメカニズム(Eph-エフリン)が働くのかそれとも全く異なったメカニズムなのかについてはわかっていない。同側の投射は最初は領域内にある程度広がっているが発達の段階で最終的な標的に集束することが知られているが、この集束する過程には神経活動依存性のメカニズムが働いていることは明らかにされている。ヒトでは50%の投射が同側からであり、したがって上記で推測される対側の投射のメカニズム以外に、同側のトポグラフィックマッピングのメカニズム及び同側と対側の情報の統合のメカニズムが何らかの形で必要である。
 [[外側膝状体]]と大脳皮質の視覚野でもトポグラフィックマップは形成されているがその分子メカニズムは視蓋/上丘ほどは明らかにされていない。ここで一つ注意しておきたいのは上記のニワトリの系は両眼視をする系ではないということである。したがって、Eph-エフリンによる化学親和のメカニズムは対側に投射する軸索に当てはまるものである。マウスではヒトほど顕著ではないものの、両眼視をすることができ、したがって外側膝状体では対側の眼からの軸索の投射する場所と同側の眼からの軸索の投射する場所が存在し、結果として同じ視野フィールドからの情報が同じ側の視覚中枢に集束することになる。この場合、対側からの投射についてはニワトリと同じ様なメカニズムが当てはまると考えられるが、同側からの投射については対側と同じメカニズム(Eph-エフリン)が働くのかそれとも全く異なったメカニズムなのかについてはわかっていない。同側の投射は最初は領域内にある程度広がっているが発達の段階で最終的な標的に集束することが知られているが、この集束する過程には神経活動依存性のメカニズムが働いていることは明らかにされている。ヒトでは50%の投射が同側からであり、したがって上記で推測される対側の投射のメカニズム以外に、同側のトポグラフィックマッピングのメカニズム及び同側と対側の情報の統合のメカニズムが何らかの形で必要である。


 一方、外側膝状体と大脳皮質の視覚野の系でよく研究されているのはこれらの視覚中枢における右目と左目から投射を受けている部位の交互なストライプ状の配置である。大脳皮質においてはこのストライプ状にならんだカラムをを[[優位視覚性円柱]] ocular dominance columnという。[[wikipedia:ja:ネコ|ネコ]]で片方の眼を視覚の発達段階に閉じることでこのストライプのサイズに変化を与えることができるのでこれには神経活動依存的なメカニズムが関与していることが知られている。  
 一方、外側膝状体と大脳皮質の視覚野の系でよく研究されているのはこれらの視覚中枢における右目と左目から投射を受けている部位の交互なストライプ状の配置である。大脳皮質においてはこのストライプ状にならんだカラムを[[優位視覚性円柱]] ocular dominance columnという。[[wikipedia:ja:ネコ|ネコ]]で片方の眼を視覚の発達段階に閉じることでこのストライプのサイズに変化を与えることができるのでこれには神経活動依存的なメカニズムが関与していることが知られている。  


 トポグラフィックマップの形成後はそれを変えることは難しいが、形成の前に脳の領域ごとに[[可塑性]]が持続する時期があり、それを[[臨界期]]と呼ぶ。この時期は神経活動依存的な修飾が可能な時期であり、この時期内での神経活動の変化は脳内でのマップのパターンを変えることができる。臨界期における神経活動の変化は上記の優位視覚性円柱(すなわちトポグラフィカルマップ)のパターンを変える(例えば右目と左目のカラムでサイズが変わる)(詳しくは[[臨界期]]及び[[優位視覚性円柱]]の項を参照)。
 トポグラフィックマップの形成後はそれを変えることは難しいが、形成の前に脳の領域ごとに[[可塑性]]が持続する時期があり、それを[[臨界期]]と呼ぶ。この時期は神経活動依存的な修飾が可能な時期であり、この時期内での神経活動の変化は脳内でのマップのパターンを変えることができる。臨界期における神経活動の変化は上記の優位視覚性円柱(すなわちトポグラフィカルマップ)のパターンを変える(例えば右目と左目のカラムでサイズが変わる)(詳しくは[[臨界期]]及び[[優位視覚性円柱]]の項を参照)。
68行目: 68行目:
=== その他 ===
=== その他 ===


 その他、[[聴覚]]系(音の周波数情報)、[[体性感覚]]系(身体における位置情報、特にマウスやラットの髭とバレル皮質の系)、[[味覚]]系(違う味覚物質を感受する受容体からの情報)、及び運動系(身体における位置情報)などのトポグラフィックマップが研究されている。
 その他、[[聴覚]]系(音の周波数情報)、[[体性感覚]]系(身体における位置情報、特にマウスやラットの髭と[[バレル皮質]]の系)、[[味覚]]系(違う味覚物質を感受する受容体からの情報)、及び運動系(身体における位置情報)などのトポグラフィックマップが研究されている。


== 関連項目  ==
== 関連項目  ==
131

回編集