「数・量の概念」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
英:concept of number/quantity  
英:concept of number/quantity  


 数・量の概念(concept of number/quantity)とは、数さらには量に関わる概念であり、哲学や心理学の関連分野でも扱われてきたが、脳科学では、対象から、数さらには量に関わる概念を作り出し、それを操作する際の脳内情報処理過程についてを主に扱う。量(quantity)、順序(rank)、ラベル(label)の3要素を持つものとされている(図)<ref name="Nieder2005"><pubmed>15711599</pubmed></ref>。
 数・量の概念(concept of number/quantity)とは、数さらには量に関わる概念であり、哲学や心理学の関連分野でも扱われてきたが、脳科学では、対象から、数さらには量に関わる概念を作り出し、それを操作する際の脳内情報処理過程についてを主に扱う。量(quantity)、順序(rank)、ラベル(label)の3要素を持つものとされている(図)<ref name="Nieder2005"><pubmed>15711599</pubmed></ref>。


[[Image:Nieder_Figure.JPG|thumb|right|400px|'''図: 数量の概念'''<br>Niederらは、陸上競技の写真を例に数・量の概念を説明している。この4人の陸上選手が並んでいる写真には、量、順序、ラベルの要素を含んでいる。まず「4人」というのが量の要素にあたる。また、右端の選手に注目した場合に「4番目」ということができる。これが順序の要素にあたる。右端の選手は、「968番」のゼッケンをつけている。これがラベルの要素にあたる。ラベルは、個体認識や分類のための番号であり、直接的には量や順序との対応を持たなくともよい。文献<ref name="Nieder2005" />より著者および出版社の許可を得て引用。]]
[[Image:Nieder_Figure.JPG|thumb|right|400px|'''図: 数量の概念'''<br>Niederらは、陸上競技の写真を例に数・量の概念を説明している。この4人の陸上選手が並んでいる写真には、量、順序、ラベルの要素を含んでいる。まず「4人」というのが量の要素にあたる。また、右端の選手に注目した場合に「4番目」ということができる。これが順序の要素にあたる。右端の選手は、「968番」のゼッケンをつけている。これがラベルの要素にあたる。ラベルは、個体認識や分類のための番号であり、直接的には量や順序との対応を持たなくともよい。文献<ref name="Nieder2005" />より著者および出版社の許可を得て引用。]]


== 動物の脳内機構 ==


== 動物の脳内機構 ==
=== 概論 ===
=== 概論 ===
 覚醒サルに対する単一細胞電位記録手法を用いた実験的研究等により、数・量の概念学習を対象としてその脳内情報処理が明らかとなってきた<ref name="Miller2003"><pubmed>12744974</pubmed></ref>。量や、量と順序の関係に着目した研究等から、特に頭頂間溝などの後部頭頂皮質と前頭前野の関与が示唆されている<ref name="Nieder2009"><pubmed>19400715</pubmed></ref>。  
 覚醒サルに対する単一細胞電位記録手法を用いた実験的研究等により、数・量の概念学習を対象としてその脳内情報処理が明らかとなってきた<ref name="Miller2003"><pubmed>12744974</pubmed></ref>。量や、量と順序の関係に着目した研究等から、特に頭頂間溝などの後部頭頂皮質と前頭前野の関与が示唆されている<ref name="Nieder2009"><pubmed>19400715</pubmed></ref>。  


=== 各論 ===
=== 各論 ===
 上記の具体として、例えばNiederらは、数を判断させる課題を遂行中のサルから単一細胞電位記録を行い報告している。1940年代には、鳥類でも紙に描かれたドットの数のマッチングが可能であることが知られていたが、このサルを用いた実験でも、空間配置、表面積、円周、密度、形状など様々な要素のドットを提示し、ドットの大小・位置などは関係なく、数に応答するようにサルを訓練することに成功した。その結果、数を判断する課題を行わせている最中には、前頭前野の外側部や頭頂間溝周辺において、視覚刺激の要素ではなく刺激に含まれる図形の数によって変化する神経細胞の活動が観察できた<ref name="Nieder2005" /><ref name="Miller2003" /><ref name="Nieder2009" />。
 上記の具体として、例えばNiederらは、数を判断させる課題を遂行中のサルから単一細胞電位記録を行い報告している。1940年代には、鳥類でも紙に描かれたドットの数のマッチングが可能であることが知られていたが、このサルを用いた実験でも、空間配置、表面積、円周、密度、形状など様々な要素のドットを提示し、ドットの大小・位置などは関係なく、数に応答するようにサルを訓練することに成功した。その結果、数を判断する課題を行わせている最中には、前頭前野の外側部や頭頂間溝周辺において、視覚刺激の要素ではなく刺激に含まれる図形の数によって変化する神経細胞の活動が観察できた<ref name="Nieder2005" /><ref name="Miller2003" /><ref name="Nieder2009" />。


== ヒトの脳内機構 ==


== ヒトの脳内機構 ==
=== 概論 ===
=== 概論 ===
 機能的磁気共鳴画像法(fMRI)<ref name="Arsalidou2001"><pubmed>20946958</pubmed></ref>や、経頭蓋磁気刺激法(TMS)<ref name="Sandrini2008"><pubmed>18976990</pubmed></ref>といった神経画像手法を用いて数・量の概念に関するヒト脳内情報処理が明らかとされてきており、やはり頭頂間溝などの後部頭頂皮質の役割が最も注目されている。動物実験と同様に、量や、量と順序の関係に着目した研究が多い<ref name="Nieder2009" />。また、ヒトが行う正確で離散的な処理も着目されている<ref name="Nieder2005" /><ref name="Dehaene1999"><pubmed>10320379</pubmed></ref><ref name="Kansaku2007"><pubmed>17051376</pubmed></ref>。さらに、数・量に関わらず、大きさ(magnitude)には共通の神経基盤が関与するとの観点からの研究もなされている<ref name="Bueti2009"><pubmed>19487186</pubmed></ref>。
 機能的磁気共鳴画像法(fMRI)<ref name="Arsalidou2001"><pubmed>20946958</pubmed></ref>や、経頭蓋磁気刺激法(TMS)<ref name="Sandrini2008"><pubmed>18976990</pubmed></ref>といった神経画像手法を用いて数・量の概念に関するヒト脳内情報処理が明らかとされてきており、やはり頭頂間溝などの後部頭頂皮質の役割が最も注目されている。動物実験と同様に、量や、量と順序の関係に着目した研究が多い<ref name="Nieder2009" />。また、ヒトが行う正確で離散的な処理も着目されている<ref name="Nieder2005" /><ref name="Dehaene1999"><pubmed>10320379</pubmed></ref><ref name="Kansaku2007"><pubmed>17051376</pubmed></ref>。さらに、数・量に関わらず、大きさ(magnitude)には共通の神経基盤が関与するとの観点からの研究もなされている<ref name="Bueti2009"><pubmed>19487186</pubmed></ref>。


=== 各論 ===
 その実際を例示すると、ArsalidouとTaylorは、過去の神経画像手法を用いた研究に関してメタ解析を行うことで、数・量に関わる脳領域を報告した。数の比較等の計算を必要としない課題では、頭頂葉、特に上・下頭頂小葉が重要であり、計算を必要とする課題では、それらの領域に加えて、中・上前頭回などの前頭前野や楔前部が活動することを示した。さらに計算課題の中でも足し算、引き算、掛け算の計算内容の違いによっても活動する部位が異なることを示している<ref name="Arsalidou2001" />。


=== 各論 ===
 その実際を例示すると、ArsalidouとTaylorは、過去の神経画像手法を用いた研究に関してメタ解析を行うことで、数・量に関わる脳領域を報告した。数の比較等の計算を必要としない課題では、頭頂葉、特に上・下頭頂小葉が重要であり、計算を必要とする課題では、それらの領域に加えて、中・上前頭回などの前頭前野や楔前部が活動することを示した。さらに計算課題の中でも足し算、引き算、掛け算の計算内容の違いによっても活動する部位が異なることを示している<ref name="Arsalidou2001" />。<br>
 ヒトの正確な数的処理の特殊性についても報告されており、連続した刺激を正確にカウンティングさせる際のfMRI信号を計測すると左腹側運動前野の活動が認められ、さらにこの領域に磁気刺激(TMS)を加えると、カウンティングが正確に行えなくなることが示された<ref name="Kansaku2007" />。また、Dehaeneらの研究からは、正確な計算には左角回に活動がみられるのに対して、概算を行う際は、両側の頭頂葉に活動がみられることが見いだされた<ref name="Dehaene1999" />。
 ヒトの正確な数的処理の特殊性についても報告されており、連続した刺激を正確にカウンティングさせる際のfMRI信号を計測すると左腹側運動前野の活動が認められ、さらにこの領域に磁気刺激(TMS)を加えると、カウンティングが正確に行えなくなることが示された<ref name="Kansaku2007" />。また、Dehaeneらの研究からは、正確な計算には左角回に活動がみられるのに対して、概算を行う際は、両側の頭頂葉に活動がみられることが見いだされた<ref name="Dehaene1999" />。


== 関連項目 ==
== 関連項目 ==
*[[概念形成]]
*[[概念形成]]


== 参考文献 ==
== 参考文献 ==
<references />  
<references />  


(執筆者:大良 宏樹、神作 憲司 担当編集委員:定藤 規弘)
 
(執筆者:大良宏樹、神作憲司 担当編集委員:定藤規弘)