「Rhoファミリー低分子量Gタンパク質」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
<br>
<br>


歴史<br>1985年にRho familyの中でRhoAが新規のRas類似タンパクとして同定された<ref><pubmed> 3888408 </pubmed></ref>。続いて1989年にRas類似タンパクとしてRac1とRac2が<ref><pubmed> 2674130 </pubmed></ref>、1990年にCdc42が同定された<ref><pubmed> 2122236 </pubmed></ref>。Rho familyの細胞内機能の解明には、Rhoを特異的にADPリボシル化して不活性化するボツリヌス菌由来の菌体外酵素C3が大いに貢献した<ref><pubmed> 3805032 </pubmed></ref> <ref><pubmed> 3141419 </pubmed></ref>。C3によるRhoの不活性化は、PC-12細胞における神経突起様突起の伸展促進<ref><pubmed> 2106882 </pubmed></ref>、血小板凝集の阻害<ref><pubmed> 1400407 </pubmed></ref>、受精卵の細胞分裂の阻害などの細胞形態変化を誘導することから<ref><pubmed> 8081830 </pubmed></ref>、細胞形態制御におけるRhoの重要性が示唆された。その後、Rhoを不活性化するC3や活性化型Rho変異体を微小注入した線維芽細胞において、Rhoの活性化がアクチンとミオシンが束状に配列したストレスファイバー構造とこれがアンカーする細胞接着斑の誘導に不可欠であることが示された<ref><pubmed> 1643657 </pubmed></ref>。一方、線維芽細胞におけるRacの活性化は、アクチン線維の網目構造からなる細胞辺縁のラメリポディア(葉状仮足)を誘導し、Cdc42の活性化はアクチン結合タンパクで架橋されたアクチン束からなるフィロポディア(糸状仮足)を誘導することが示された<ref><pubmed> 9438836 </pubmed></ref>。すなわち、Rho、Rac、Cdc42はアクチン再構築において特異的な作用を発揮することが明らかにされた。<br>
'''歴史<br>'''1985年にRho familyの中でRhoAが新規のRas類似タンパクとして同定された<ref><pubmed> 3888408 </pubmed></ref>。続いて1989年にRas類似タンパクとしてRac1とRac2が<ref><pubmed> 2674130 </pubmed></ref>、1990年にCdc42が同定された<ref><pubmed> 2122236 </pubmed></ref>。Rho familyの細胞内機能の解明には、Rhoを特異的にADPリボシル化して不活性化するボツリヌス菌由来の菌体外酵素C3が大いに貢献した<ref><pubmed> 3805032 </pubmed></ref> <ref><pubmed> 3141419 </pubmed></ref>。C3によるRhoの不活性化は、PC-12細胞における神経突起様突起の伸展促進<ref><pubmed> 2106882 </pubmed></ref>、血小板凝集の阻害<ref><pubmed> 1400407 </pubmed></ref>、受精卵の細胞分裂の阻害などの細胞形態変化を誘導することから<ref><pubmed> 8081830 </pubmed></ref>、細胞形態制御におけるRhoの重要性が示唆された。その後、Rhoを不活性化するC3や活性化型Rho変異体を微小注入した線維芽細胞において、Rhoの活性化がアクチンとミオシンが束状に配列したストレスファイバー構造とこれがアンカーする細胞接着斑の誘導に不可欠であることが示された<ref><pubmed> 1643657 </pubmed></ref>。一方、線維芽細胞におけるRacの活性化は、アクチン線維の網目構造からなる細胞辺縁のラメリポディア(葉状仮足)を誘導し、Cdc42の活性化はアクチン結合タンパクで架橋されたアクチン束からなるフィロポディア(糸状仮足)を誘導することが示された<ref><pubmed> 9438836 </pubmed></ref>。すなわち、Rho、Rac、Cdc42はアクチン再構築において特異的な作用を発揮することが明らかにされた。<br>


<br>
<br>


ファミリー<br>低分子量Gタンパク質の中で最初に発見されたのはRasであることから、低分子量Gタンパク質をRas類似タンパク質と総称することがある。現在では、哺乳類において低分子量Gタンパク質は約150種類からなり、構造の類似性と主たる機能から、細胞増殖を制御するRas family、細胞骨格を制御するRho family、小胞輸送を制御するRab familyとArf family、核内輸送を制御するRan familyに分類される<ref name="ref2"><pubmed> 17035353 </pubmed></ref>。これらを包括してRas superfamilyと称する。<br>哺乳類のRho familyはおよそ20種類のメンバーからなり、RhoA、RhoB、RhoC、RhoD、RhoF/Rif、Rnd1、Rnd2、Rnd3/RhoE、Rac1、Rac2、Rac3、RhoG、Cdc42、RhoQ/TC10、RhoJ/TCL、RhoU/Wrch、RhoV/Chp、RhoH/TTF、RhoBTB1、RhoBTB2/DBC-2が含まれる<ref name="ref2" />。これらのほとんどが、不活性型のGDP結合型と活性型のGTP結合型の二つの状態を取り、GDP-GTP交換反応と内在性のGTPase活性に依存したGTP水解反応により両者の間を往復してスイッチ機能を果たす<ref name="ref1" />。しかし、Rnd1、Rnd2、Rnd3は内在性のGTPase活性に乏しく、恒常的にGTP結合型となる<ref><pubmed>16493413</pubmed></ref>。Rndの機能は局在や発現、リン酸化などにより制御される。  
'''ファミリー<br>'''低分子量Gタンパク質の中で最初に発見されたのはRasであることから、低分子量Gタンパク質をRas類似タンパク質と総称することがある。現在では、哺乳類において低分子量Gタンパク質は約150種類からなり、構造の類似性と主たる機能から、細胞増殖を制御するRas family、細胞骨格を制御するRho family、小胞輸送を制御するRab familyとArf family、核内輸送を制御するRan familyに分類される<ref name="ref2"><pubmed> 17035353 </pubmed></ref>。これらを包括してRas superfamilyと称する。<br>哺乳類のRho familyはおよそ20種類のメンバーからなり、RhoA、RhoB、RhoC、RhoD、RhoF/Rif、Rnd1、Rnd2、Rnd3/RhoE、Rac1、Rac2、Rac3、RhoG、Cdc42、RhoQ/TC10、RhoJ/TCL、RhoU/Wrch、RhoV/Chp、RhoH/TTF、RhoBTB1、RhoBTB2/DBC-2が含まれる<ref name="ref2" />。これらのほとんどが、不活性型のGDP結合型と活性型のGTP結合型の二つの状態を取り、GDP-GTP交換反応と内在性のGTPase活性に依存したGTP水解反応により両者の間を往復してスイッチ機能を果たす<ref name="ref1" />。しかし、Rnd1、Rnd2、Rnd3は内在性のGTPase活性に乏しく、恒常的にGTP結合型となる<ref><pubmed>16493413</pubmed></ref>。Rndの機能は局在や発現、リン酸化などにより制御される。  


<br>
<br>


活性化・不活性化の制御<br>Rho familyの活性は、各メンバーに特異的に作用する3種類の制御因子、すなわちRhoグアニンヌクレオチド交換因子 (Rho guanine nucleotide exchange factor, Rho GEF)、Rho GTPase活性化タンパク質 (Rho GTPase-activating protein, Rho GAP)、Rhoグアニンヌクレオチド解離阻害因子 (Rho guanine nucleotide dissociation inhibitor, Rho GDI) により制御される。
'''活性化・不活性化の制御<br>'''Rho familyの活性は、各メンバーに特異的に作用する3種類の制御因子、すなわちRhoグアニンヌクレオチド交換因子 (Rho guanine nucleotide exchange factor, Rho GEF)、Rho GTPase活性化タンパク質 (Rho GTPase-activating protein, Rho GAP)、Rhoグアニンヌクレオチド解離阻害因子 (Rho guanine nucleotide dissociation inhibitor, Rho GDI) により制御される。  


<br>


Rho GEF<br>Rho GEFは、不活性型Rhoに結合したGDPをGTPに置換することで活性型へと移行させる<ref name="ref14"><pubmed>17126549</pubmed></ref>。多くのRho GEFは、触媒活性を有するDbl homology (DH)ドメインと隣接するPleckstrin homology (PH)ドメインを持つ<ref name="ref14" />。しかし、Dock180など一群のRac GEFではDHドメインは存在せず、Dock homology region (DHR)-2ドメインと呼ばれる新たなGEF触媒活性領域が同定されている<ref><pubmed>17765544</pubmed></ref>。Rho familyを標的とするGEFはヒトでは70種類以上存在し、Rho familyの各メンバーに対する基質特異性はGEF間で大きく異なる。Rho GEFの各メンバーの機能や制御については「神経系での機能」に詳述する。


Rho GEF<br>Rho GEFは、不活性型Rhoに結合したGDPをGTPに置換することで活性型へと移行させる<ref name="ref14"><pubmed>17126549</pubmed></ref>。多くのRho GEFは、触媒活性を有するDbl homology (DH)ドメインと隣接するPleckstrin homology (PH)ドメインを持つ<ref name="ref14" />。しかし、Dock180など一群のRac GEFではDHドメインは存在せず、Dock homology region (DHR)-2ドメインと呼ばれる新たなGEF触媒活性領域が同定されている<ref><pubmed>17765544</pubmed></ref>。Rho familyを標的とするGEFはヒトでは70種類以上存在し、Rho familyの各メンバーに対する基質特異性はGEF間で大きく異なる。Rho GEFの各メンバーの機能や制御については「神経系での機能」に詳述する。
<br>
 
 
 
Rho GAP<br>Rho GAPはRhoの内在的なGTPase活性を亢進させ、活性型Rhoに結合しているGTPをGDPに加水分解することでRhoを不活性型へと移行させる<ref name="ref16"><pubmed>17222083</pubmed></ref>。すべてのRho GAPはGAP活性を有するRho-GAPドメインを持っている<ref name="ref16" />。ヒトでは80種類以上のRho GAPが存在するが、Rho familyの各メンバーに対する基質特異性はGAP間で大きく異なる。Rho GAPの各メンバーの機能や制御については「神経系での機能」に詳述する。


Rho GAP<br>Rho GAPはRhoの内在的なGTPase活性を亢進させ、活性型Rhoに結合しているGTPをGDPに加水分解することでRhoを不活性型へと移行させる<ref name="ref16"><pubmed>17222083</pubmed></ref>。すべてのRho GAPはGAP活性を有するRho-GAPドメインを持っている<ref name="ref16" />。ヒトでは80種類以上のRho GAPが存在するが、Rho familyの各メンバーに対する基質特異性はGAP間で大きく異なる。Rho GAPの各メンバーの機能や制御については「神経系での機能」に詳述する。


<br>


Rho GDI<br>Rho GDIはRhoからのGDPの解離およびGTPの加水分解を抑制する<ref name="ref17"><pubmed> 21779026 </pubmed></ref>。またRhoのC末端にあるイソプレニル基に結合することで、細胞膜への移行を阻害する<ref name="ref17" />。無刺激下では、ほとんどのRhoはRho GDIと結合して細胞質に存在すると考えられている。哺乳類においては3種類のRho GDI(RhoGDI1、RhoGDI2、RhoGDI3)が知られている。Rho GDIの基質特異性はRho GEFやRho GAPと比べて低く、Rho familyのメンバーに広く作用する。Rho GDIの機能や制御については「神経系での機能」に詳述する。  
Rho GDI<br>Rho GDIはRhoからのGDPの解離およびGTPの加水分解を抑制する<ref name="ref17"><pubmed> 21779026 </pubmed></ref>。またRhoのC末端にあるイソプレニル基に結合することで、細胞膜への移行を阻害する<ref name="ref17" />。無刺激下では、ほとんどのRhoはRho GDIと結合して細胞質に存在すると考えられている。哺乳類においては3種類のRho GDI(RhoGDI1、RhoGDI2、RhoGDI3)が知られている。Rho GDIの基質特異性はRho GEFやRho GAPと比べて低く、Rho familyのメンバーに広く作用する。Rho GDIの機能や制御については「神経系での機能」に詳述する。  
27行目: 27行目:
<br>
<br>


エフェクター<br>Rho familyの作用は活性型Rhoが下流のエフェクター分子に結合することで発揮される<ref name="ref1" />。Two hybrid法や生化学的手法から、Rho familyのエフェクターにはアクチン核化・重合因子、タンパクリン酸化酵素、ホスホリパーゼなど、60種類以上の様々な分子が同定されてきた<ref name="ref1" />。以下、細胞骨格制御に関わる主なRho familyのエフェクターについて概説する。
'''エフェクター<br>'''Rho familyの作用は活性型Rhoが下流のエフェクター分子に結合することで発揮される<ref name="ref1" />。Two hybrid法や生化学的手法から、Rho familyのエフェクターにはアクチン核化・重合因子、タンパクリン酸化酵素、ホスホリパーゼなど、60種類以上の様々な分子が同定されてきた<ref name="ref1" />。以下、細胞骨格制御に関わる主なRho familyのエフェクターについて概説する。  


<br>


Rhoエフェクター<br>Rhoの活性化はアクチン重合促進とミオシン軽鎖活性化によるアクトミオシン束の形成を誘導する<ref name="ref18">9247125</pubmed></ref>。Rhoによるアクチン細胞骨格制御にはROCK(Rho kinase; Rho-associated kinase)とmDiaの二つのエフェクター分子が主要な役割を担う<ref name="ref19"><pubmed>19160018</pubmed></ref>。<br>ROCKは活性型Rhoにより活性化されるserine/threonine kinaseで、キナーゼ領域以外にcoiled-coil領域、Rho結合領域、PH領域からなる。数多くの基質が知られているが、このうちアクチン細胞骨格制御に関わるものはミオシン軽鎖(myosin light chain; MLC)とミオシン軽鎖脱リン酸化酵素(myosin light chain phosphatase; MLCP)である。ROCKによるMLCリン酸化はMLCを活性化し、アクトミオシン束の形成を促す<ref name="ref20"><pubmed>8702756</pubmed></ref>。また、ROCKによるMLCPのリン酸化はMLCPの酵素活性を阻害することで、間接的にMLCリン酸化を促進する<ref name="ref21"><pubmed>8662509</pubmed></ref> <ref name="ref22"><pubmed>9353125</pubmed></ref>。さらに、ROCKはLIMキナーゼ(LIM kinase)を活性化してcofilinのリン酸化を促し、cofilinによるアクチン脱重合を阻害する<ref name="ref23"><pubmed>10436159</pubmed></ref>。また、ROCKは脱リン酸化酵素PTENの活性も増強する<ref name="ref24"><pubmed>15793569</pubmed></ref>。フォスファチジルイノシトール三リン酸PtdIns(3,4,5)P3の局在は、細胞遊走や突起伸展における細胞極性の形成に不可欠である。PTENはPtdIns(3,4,5)P3を脱リン酸化してPtdIns(4,5)P2に変換することから、細胞極性の形成におけるRho-ROCK-PTEN経路の関与が示唆される<ref name="ref24" />。<br>mDiaは異なる遺伝子でコードされるmDia1、mDia2、mDia3の三つのアイソフォームからなり、mDia1とmDia3が脳内では強く発現する<ref name="ref25"><pubmed>22246438</pubmed></ref>。いずれもプロフィリンと結合するFH1ドメインとアクチン重合促進に必須のFH2ドメインを持つ<ref name="ref26"><pubmed>17373907</pubmed></ref>。不活性化状態ではN末端のDia inhibitory domain (DID)とC末端のDiaphanous autoregulatory domain (DAD)の間で分子内結合を形成するが、活性型RhoがDIDの近傍にあるRho結合ドメインに結合することでDID-DAD間の分子間結合が解除される。これにより、mDiaはプロフィリンと単量体アクチンの複合体に結合してアクチン重合核を形成し、さらにアクチン線維の反矢じり端(barbed end)に単量体アクチンを付加して、直鎖状のアクチン線維の重合を促す<ref name="ref26" /> <ref name="ref27"><pubmed>15044801</pubmed></ref>。<br>線維芽細胞株で見られるRho活性化によるアクトミオシン束の形成には、ROCKによるミオシン活性化とmDiaによる直鎖状アクチン線維形成の両者が不可欠である<ref name="ref28"><pubmed>10559899</pubmed></ref>。また、mDiaはアクチン線維形成に加えて、微小管の安定化や配向の制御にも関わる<ref name="ref29"><pubmed>11483957</pubmed></ref> <ref name="ref30"><pubmed>11146620</pubmed></ref>。特にmDia2は微小管のプラス端に結合するEB1やAPCに結合して、微小管の安定性を制御することが示唆されている<ref name="ref31"><pubmed>15311282</pubmed></ref>。


Rhoエフェクター<br>Rhoの活性化はアクチン重合促進とミオシン軽鎖活性化によるアクトミオシン束の形成を誘導する<ref name="ref18">9247125</pubmed></ref>。Rhoによるアクチン細胞骨格制御にはROCK(Rho kinase; Rho-associated kinase)とmDiaの二つのエフェクター分子が主要な役割を担う<ref name="ref19"><pubmed>19160018</pubmed></ref>。<br>ROCKは活性型Rhoにより活性化されるserine/threonine kinaseで、キナーゼ領域以外にcoiled-coil領域、Rho結合領域、PH領域からなる。数多くの基質が知られているが、このうちアクチン細胞骨格制御に関わるものはミオシン軽鎖(myosin light chain; MLC)とミオシン軽鎖脱リン酸化酵素(myosin light chain phosphatase; MLCP)である。ROCKによるMLCリン酸化はMLCを活性化し、アクトミオシン束の形成を促す<ref name="ref20"><pubmed>8702756</pubmed></ref>。また、ROCKによるMLCPのリン酸化はMLCPの酵素活性を阻害することで、間接的にMLCリン酸化を促進する<ref name="ref21"><pubmed>8662509</pubmed></ref> <ref name="ref22"><pubmed>9353125</pubmed></ref>。さらに、ROCKはLIMキナーゼ(LIM kinase)を活性化してcofilinのリン酸化を促し、cofilinによるアクチン脱重合を阻害する<ref name="ref23"><pubmed>10436159</pubmed></ref>。また、ROCKは脱リン酸化酵素PTENの活性も増強する<ref name="ref24"><pubmed>15793569</pubmed></ref>。フォスファチジルイノシトール三リン酸PtdIns(3,4,5)P3の局在は、細胞遊走や突起伸展における細胞極性の形成に不可欠である。PTENはPtdIns(3,4,5)P3を脱リン酸化してPtdIns(4,5)P2に変換することから、細胞極性の形成におけるRho-ROCK-PTEN経路の関与が示唆される<ref name="ref24" />。<br>mDiaは異なる遺伝子でコードされるmDia1、mDia2、mDia3の三つのアイソフォームからなり、mDia1とmDia3が脳内では強く発現する<ref name="ref25"><pubmed>22246438</pubmed></ref>。いずれもプロフィリンと結合するFH1ドメインとアクチン重合促進に必須のFH2ドメインを持つ<ref name="ref26"><pubmed>17373907</pubmed></ref>。不活性化状態ではN末端のDia inhibitory domain (DID)とC末端のDiaphanous autoregulatory domain (DAD)の間で分子内結合を形成するが、活性型RhoがDIDの近傍にあるRho結合ドメインに結合することでDID-DAD間の分子間結合が解除される。これにより、mDiaはプロフィリンと単量体アクチンの複合体に結合してアクチン重合核を形成し、さらにアクチン線維の反矢じり端(barbed end)に単量体アクチンを付加して、直鎖状のアクチン線維の重合を促す<ref name="ref26" /> <ref name="ref27"><pubmed>15044801</pubmed></ref>。<br>線維芽細胞株で見られるRho活性化によるアクトミオシン束の形成には、ROCKによるミオシン活性化とmDiaによる直鎖状アクチン線維形成の両者が不可欠である<ref name="ref28"><pubmed>10559899</pubmed></ref>。また、mDiaはアクチン線維形成に加えて、微小管の安定化や配向の制御にも関わる<ref name="ref29"><pubmed>11483957</pubmed></ref> <ref name="ref30"><pubmed>11146620</pubmed></ref>。特にmDia2は微小管のプラス端に結合するEB1やAPCに結合して、微小管の安定性を制御することが示唆されている<ref name="ref31"><pubmed>15311282</pubmed></ref>。
<br>


Rac/Cdc42エフェクター<br>Arp2/3複合体はRacとCdc42の下流で働くアクチン核化・重合因子であり、既存のアクチン線維の側面に結合して、そこを起点にアクチン線維の伸展を促すことで枝分かれ構造を形成する<ref name="ref32"><pubmed>19965462</pubmed></ref>。RacとCdc42は、それぞれWAVE(WASP-like Verprolin-homologous protein)とN-WASP/WASP(Wiskott-Aldrich syndrome protein)と呼ばれる足場タンパクを介してArp2/3依存的なアクチン重合を引き起こす<ref name="ref33"><pubmed>17183359</pubmed></ref>。N-WASP/WASP、WAVEは共通したドメイン構造を持ち、PH領域、RacあるいはCdc42の結合するCRIB領域、Arp2/3活性化を促すVCA領域(verprolin-like motif、cofilin-like motif、acidic motif)などからなる。不活性化状態では分子内結合を介してVCA領域の活性が抑制されているが、CRIB領域へのRacあるいはCdc42の結合によりVCA領域の活性抑制が解除され、Arp2/3を介したアクチン重合が促される。Rac活性化はWAVEの細胞辺縁部への集積を促し、Arp2/3を介してラメリポディアの形成を促す<ref name="ref34"><pubmed>20484635</pubmed></ref>。Cdc42活性化によるフィロポディア誘導にはN-WASPの関与も示唆されているが<ref name="ref35"><pubmed>9422512</pubmed></ref>、近年Cdc42によるフィロポディア形成にmDia2が関与すること、mDia2がCdc42に直接結合することが示された<ref name="ref36"><pubmed>18516090</pubmed></ref>。<br>p21-activated kinase (PAK)はRacとCdc42の共通のエフェクターである<ref name="ref37"><pubmed>12676796</pubmed></ref>。PAKの基質にはアクチン細胞骨格制御に関与するものが数多く含まれる。例えば、PAKはmyosin light chain kinase (MLCK)をリン酸化して、その活性を抑制する<ref name="ref38"><pubmed>10092231</pubmed></ref>。また、PAKはLIM kinaseによるcofilinのリン酸化も促し、cofilinによるアクチン脱重合を阻害する<ref name="ref39"><pubmed>9655398</pubmed></ref> <ref name="ref40"><pubmed>10559936</pubmed></ref>。アクチン細胞骨格制御以外にも、PAKは微小管脱重合因子のstathmin/Op18をリン酸化により抑制し、微小管の安定化にも関与すると考えられている<ref name="ref41"><pubmed> 11058583 </pubmed></ref> <ref name="ref42"><pubmed>12796474</pubmed></ref>。<br>p35/cyclin-dependent kinase 5 (cdk5)も活性型Racに結合するRacエフェクターであり、Rac、PAKと共に複合体を形成する<ref name="ref43"><pubmed>9744280</pubmed></ref>。p35/cdk5によるPAKのリン酸化はPAKのキナーゼ活性を抑制することから、Racエフェクター間での相互作用が伺える。<br>MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase)はCdc42特異的なエフェクターである<ref name="ref44"><pubmed>9418861</pubmed></ref>。過剰発現実験から、Cdc42によるフィロポディア誘導に関与することが示唆されているが、その作用機序は不明である。<br>細胞極性形成にはPar6/Par3/aPKC複合体やPI 3-kinaseによるPtdIns(3,4,5)P3の産生が重要である。活性型Cdc42はPar6と直接結合し、Par6/Par3/aPKC複合体の局在制御やaPKCの活性化を引き起こす。この作用は細胞遊走や軸索形成など細胞極性の形成に関与すると考えられている<ref name="ref45"><pubmed>11525734</pubmed></ref> <ref name="ref46"><pubmed>15286792</pubmed></ref>。活性型のCdc42やRacによる細胞遊走はPI 3-kinase依存的であるが<ref name="ref47"><pubmed> 9403696 </pubmed></ref>、活性型RacはPI 3-kinaseの活性を直接増強できることが示されている<ref name="ref48"><pubmed>17311006</pubmed></ref>。<br>さらにRacやCdc42は、足場タンパクIQGAP (IQ motif-containing GTPase activating protein)を介して、細胞骨格、細胞接着、細胞周期など多様な機能を統御することも示唆されている<ref name="ref49"><pubmed>12776176</pubmed></ref>。<br>


<br>


Rac/Cdc42エフェクター<br>Arp2/3複合体はRacとCdc42の下流で働くアクチン核化・重合因子であり、既存のアクチン線維の側面に結合して、そこを起点にアクチン線維の伸展を促すことで枝分かれ構造を形成する<ref name="ref32"><pubmed>19965462</pubmed></ref>。RacとCdc42は、それぞれWAVE(WASP-like Verprolin-homologous protein)とN-WASP/WASP(Wiskott-Aldrich syndrome protein)と呼ばれる足場タンパクを介してArp2/3依存的なアクチン重合を引き起こす<ref name="ref33"><pubmed>17183359</pubmed></ref>。N-WASP/WASP、WAVEは共通したドメイン構造を持ち、PH領域、RacあるいはCdc42の結合するCRIB領域、Arp2/3活性化を促すVCA領域(verprolin-like motif、cofilin-like motif、acidic motif)などからなる。不活性化状態では分子内結合を介してVCA領域の活性が抑制されているが、CRIB領域へのRacあるいはCdc42の結合によりVCA領域の活性抑制が解除され、Arp2/3を介したアクチン重合が促される。Rac活性化はWAVEの細胞辺縁部への集積を促し、Arp2/3を介してラメリポディアの形成を促す<ref name="ref34"><pubmed>20484635</pubmed></ref>。Cdc42活性化によるフィロポディア誘導にはN-WASPの関与も示唆されているが<ref name="ref35"><pubmed>9422512</pubmed></ref>、近年Cdc42によるフィロポディア形成にmDia2が関与すること、mDia2がCdc42に直接結合することが示された<ref name="ref36"><pubmed>18516090</pubmed></ref>。<br>p21-activated kinase (PAK)はRacとCdc42の共通のエフェクターである<ref name="ref37"><pubmed>12676796</pubmed></ref>。PAKの基質にはアクチン細胞骨格制御に関与するものが数多く含まれる。例えば、PAKはmyosin light chain kinase (MLCK)をリン酸化して、その活性を抑制する<ref name="ref38"><pubmed>10092231</pubmed></ref>。また、PAKはLIM kinaseによるcofilinのリン酸化も促し、cofilinによるアクチン脱重合を阻害する<ref name="ref39"><pubmed>9655398</pubmed></ref> <ref name="ref40"><pubmed>10559936</pubmed></ref>。アクチン細胞骨格制御以外にも、PAKは微小管脱重合因子のstathmin/Op18をリン酸化により抑制し、微小管の安定化にも関与すると考えられている<ref name="ref41"><pubmed> 11058583 </pubmed></ref> <ref name="ref42"><pubmed>12796474</pubmed></ref>。<br>p35/cyclin-dependent kinase 5 (cdk5)も活性型Racに結合するRacエフェクターであり、Rac、PAKと共に複合体を形成する<ref name="ref43"><pubmed>9744280</pubmed></ref>。p35/cdk5によるPAKのリン酸化はPAKのキナーゼ活性を抑制することから、Racエフェクター間での相互作用が伺える。<br>MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase)はCdc42特異的なエフェクターである<ref name="ref44"><pubmed>9418861</pubmed></ref>。過剰発現実験から、Cdc42によるフィロポディア誘導に関与することが示唆されているが、その作用機序は不明である。<br>細胞極性形成にはPar6/Par3/aPKC複合体やPI 3-kinaseによるPtdIns(3,4,5)P3の産生が重要である。活性型Cdc42はPar6と直接結合し、Par6/Par3/aPKC複合体の局在制御やaPKCの活性化を引き起こす。この作用は細胞遊走や軸索形成など細胞極性の形成に関与すると考えられている<ref name="ref45"><pubmed>11525734</pubmed></ref> <ref name="ref46"><pubmed>15286792</pubmed></ref>。活性型のCdc42やRacによる細胞遊走はPI 3-kinase依存的であるが<ref name="ref47"><pubmed> 9403696 </pubmed></ref>、活性型RacはPI 3-kinaseの活性を直接増強できることが示されている<ref name="ref48"><pubmed>17311006</pubmed></ref>。<br>さらにRacやCdc42は、足場タンパクIQGAP (IQ motif-containing GTPase activating protein)を介して、細胞骨格、細胞接着、細胞周期など多様な機能を統御することも示唆されている<ref name="ref49"><pubmed>12776176</pubmed></ref>。<br>
'''神経系での機能<br>'''


<br>


神経系での機能<br>


神経上皮細胞<br>発生脳において、脳室帯に存在する神経上皮細胞(神経幹細胞)の増殖や分化には、Rho familyを介した適切な細胞極性の形成・維持が不可欠である。例えば、神経上皮細胞間の細胞接着とそれを裏打ちするアクチン線維束の形成にはRhoAとmDia1/mDia3が関与するが、このシグナル伝達経路の破綻は脳室帯での異所性肥厚(heterotopia)を引き起こす[50-52]。一方、ROCK阻害薬Y-27632はこれらの構造に影響を与えないことから、神経上皮細胞の極性形成にはRho-mDia経路が特異的に関わる[50]。また、神経上皮細胞の細胞極性にはCdc42が不可欠であるが、この欠損は神経幹細胞の異所性増殖を引き起こす[53, 54]。Rac1欠損マウスでは神経前駆細胞が減少して小頭症を呈することから、神経上皮細胞の維持におけるRac1の重要性も示唆されている[55]。<br>
神経上皮細胞<br>発生脳において、脳室帯に存在する神経上皮細胞(神経幹細胞)の増殖や分化には、Rho familyを介した適切な細胞極性の形成・維持が不可欠である。例えば、神経上皮細胞間の細胞接着とそれを裏打ちするアクチン線維束の形成にはRhoAとmDia1/mDia3が関与するが、このシグナル伝達経路の破綻は脳室帯での異所性肥厚(heterotopia)を引き起こす[50-52]。一方、ROCK阻害薬Y-27632はこれらの構造に影響を与えないことから、神経上皮細胞の極性形成にはRho-mDia経路が特異的に関わる[50]。また、神経上皮細胞の細胞極性にはCdc42が不可欠であるが、この欠損は神経幹細胞の異所性増殖を引き起こす[53, 54]。Rac1欠損マウスでは神経前駆細胞が減少して小頭症を呈することから、神経上皮細胞の維持におけるRac1の重要性も示唆されている[55]。<br>


神経前駆細胞の移動<br>神経前駆細胞の移動は、先導突起の伸長、中心体の先導突起方向への移動とそれに引き続く細胞核・細胞体の中心体方向への移動から構成される[56]。興奮性神経前駆細胞は、放射状グリア(radial glia)の突起に沿って脳表面方向に移動し、大脳皮質層構造を形成する。この移動様式をradial migrationと呼び、Rac、Cdc42の重要性が示されている[57, 58]。先導突起の形成にはRacの関与が示唆されている。RacとCdc42では神経前駆細胞内の局在が異なることから、機能的な違いが推測されている[57]。一方radial migrationの初期におけるmultipolar shapeからbipolar shapeへの移行やその後の細胞移動にはRhoの不活性化が重要である[59]。このRhoの不活性化にはRnd2やRnd3の関与が示唆されている。<br>抑制性神経前駆細胞は、基底核原基から脳表面と平行に移動し、大脳皮質、海馬、嗅球などの広範な領域に到達する。この移動様式をtangential migrationと呼ぶが、Rho familyの役割には不明な点が多い。近年、遺伝子欠損マウスを用いた解析から、tangential migrationにおけるRho-mDia経路が明らかにされた[25]。すなわち、mDia1とmDia3の二重欠損マウスでは、大脳皮質と嗅球における抑制性神経前駆細胞のtangential migrationが著明に障害される。一方、このマウスでは興奮性神経前駆細胞のradial migrationと大脳皮質層構造には異常を認めず、radial migrationとtangential migrationでは細胞骨格の制御様式が異なることが示された。さらに蛍光ライブイメージングから、抑制性神経前駆細胞の細胞体移動には、細胞体後部におけるmDiaの集積とmDia依存的なアクチン重合が必須であることが示唆されている。<br>
神経前駆細胞の移動<br>神経前駆細胞の移動は、先導突起の伸長、中心体の先導突起方向への移動とそれに引き続く細胞核・細胞体の中心体方向への移動から構成される[56]。興奮性神経前駆細胞は、放射状グリア(radial glia)の突起に沿って脳表面方向に移動し、大脳皮質層構造を形成する。この移動様式をradial migrationと呼び、Rac、Cdc42の重要性が示されている[57, 58]。先導突起の形成にはRacの関与が示唆されている。RacとCdc42では神経前駆細胞内の局在が異なることから、機能的な違いが推測されている[57]。一方radial migrationの初期におけるmultipolar shapeからbipolar shapeへの移行やその後の細胞移動にはRhoの不活性化が重要である[59]。このRhoの不活性化にはRnd2やRnd3の関与が示唆されている。<br>抑制性神経前駆細胞は、基底核原基から脳表面と平行に移動し、大脳皮質、海馬、嗅球などの広範な領域に到達する。この移動様式をtangential migrationと呼ぶが、Rho familyの役割には不明な点が多い。近年、遺伝子欠損マウスを用いた解析から、tangential migrationにおけるRho-mDia経路が明らかにされた[25]。すなわち、mDia1とmDia3の二重欠損マウスでは、大脳皮質と嗅球における抑制性神経前駆細胞のtangential migrationが著明に障害される。一方、このマウスでは興奮性神経前駆細胞のradial migrationと大脳皮質層構造には異常を認めず、radial migrationとtangential migrationでは細胞骨格の制御様式が異なることが示された。さらに蛍光ライブイメージングから、抑制性神経前駆細胞の細胞体移動には、細胞体後部におけるmDiaの集積とmDia依存的なアクチン重合が必須であることが示唆されている。<br>


神経突起の伸展<br>神経突起の形成と伸長は、突起先端の成長円錐でのアクチン細胞骨格の再編成と、それに引き続く微小管の配向、安定化を必要とする。PC12やN1E-115など神経様細胞株を用いた解析から、Rhoの活性化は突起伸展を抑制し、Rac及びCdc42の活性化は突起伸展を促進することが示された[60, 61]。初代培養神経細胞においても、Rho、Rac、Cdc42は同様の作用を示す[62] 。Rhoによる突起伸展抑制にはROCKが重要な働きを担う[62]。Rho-ROCKの活性化は成長円錐におけるアクトミオシン束を増強することが報告されている[63]。また、Rho-ROCK経路による突起伸展抑制には、LIM kinaseによるアクチン脱重合抑制が関与することも示唆されている[64]。突起伸展に伴い、ROCKは軸索伸展に不可欠なCRMP-2をリン酸化して、その機能を抑制する[65]。一方、初代培養神経細胞では、SDF-1α投与による突起伸展促進におけるmDiaの重要性が示唆されているが[66, 67]、生理的な突起伸展制御におけるmDiaの役割は不明である。Racによる突起伸展促進作用には、WAVE-Arp2/3による成長円錐のラメリポディア形成の役割が示唆されている[34]。Cdc42による神経突起伸展にはN-WASP-Arp2/3が関与する[68]。<br>上記の研究は主に軸索を対象として行われてきたが、同様のRho familyの役割が樹状突起の形成においても示されている[62]。すなわち、Rho-ROCKの活性化は樹状突起の形成を抑制し、すでに形成された樹状突起を単純化させる。一方、Racは樹状突起の形成に促進的に働く。Cdc42も樹状突起の形成に促進的に働くことが報告されてはいるが、抑制に働くとする報告もある。<br>細胞外刺激による神経突起伸展におけるRho familyの制御機構についても研究が進んでいる。神経突起伸展に伴うRhoの活性抑制には、別のRho familyタンパク質であるRndが重要な働きを持つことが示されている。例えばRnd3/RhoEの遺伝子欠損マウス由来の海馬初代培養神経細胞では、Rho-ROCKの活性亢進により神経突起の数や長さが減少する[69]。PC12細胞では、FGF刺激による神経突起伸展促進におけるRnd1の関与も示されている[70]。Rnd1とRnd3はp190RhoGAPによりRhoの不活性化を促すことから、この作用が突起伸展を促進する可能性が考えられる[13]。神経突起伸展に伴うRacの活性化には、別のRho familyタンパクであるRhoGの関与が報告されている[71]。RhoGは足場タンパクElmoとRac GEFのDock180と三量体を形成しているが、NGF受容体の活性化はTrioを介しRhoGを活性化し、これがElmo-Dock180を介したRac活性化を促す[71]。<br>神経活動はNMDA受容体活性化による樹状突起伸展を促すが、この作用にはRhoAの抑制とRac、Cdc42の活性化の関与が示唆されている。海馬初代培養神経細胞では、NMDA受容体活性化が細胞内Ca2+依存的にTiam1をリン酸化し、これがRacの活性化を介して樹状突起伸展を促進することが示唆されている[72]。また、海馬初代培養神経細胞では、BDNFによる樹状突起伸展の促進にCLICKIII/CaMKIγが重要であること、この下流でRac GEFのSTEFによるRac活性化が関わることが示唆されている[73]。  
神経突起の伸展<br>神経突起の形成と伸長は、突起先端の成長円錐でのアクチン細胞骨格の再編成と、それに引き続く微小管の配向、安定化を必要とする。PC12やN1E-115など神経様細胞株を用いた解析から、Rhoの活性化は突起伸展を抑制し、Rac及びCdc42の活性化は突起伸展を促進することが示された[60, 61]。初代培養神経細胞においても、Rho、Rac、Cdc42は同様の作用を示す[62] 。Rhoによる突起伸展抑制にはROCKが重要な働きを担う[62]。Rho-ROCKの活性化は成長円錐におけるアクトミオシン束を増強することが報告されている[63]。また、Rho-ROCK経路による突起伸展抑制には、LIM kinaseによるアクチン脱重合抑制が関与することも示唆されている[64]。突起伸展に伴い、ROCKは軸索伸展に不可欠なCRMP-2をリン酸化して、その機能を抑制する[65]。一方、初代培養神経細胞では、SDF-1α投与による突起伸展促進におけるmDiaの重要性が示唆されているが[66, 67]、生理的な突起伸展制御におけるmDiaの役割は不明である。Racによる突起伸展促進作用には、WAVE-Arp2/3による成長円錐のラメリポディア形成の役割が示唆されている[34]。Cdc42による神経突起伸展にはN-WASP-Arp2/3が関与する[68]。<br>上記の研究は主に軸索を対象として行われてきたが、同様のRho familyの役割が樹状突起の形成においても示されている[62]。すなわち、Rho-ROCKの活性化は樹状突起の形成を抑制し、すでに形成された樹状突起を単純化させる。一方、Racは樹状突起の形成に促進的に働く。Cdc42も樹状突起の形成に促進的に働くことが報告されてはいるが、抑制に働くとする報告もある。<br>細胞外刺激による神経突起伸展におけるRho familyの制御機構についても研究が進んでいる。神経突起伸展に伴うRhoの活性抑制には、別のRho familyタンパク質であるRndが重要な働きを持つことが示されている。例えばRnd3/RhoEの遺伝子欠損マウス由来の海馬初代培養神経細胞では、Rho-ROCKの活性亢進により神経突起の数や長さが減少する[69]。PC12細胞では、FGF刺激による神経突起伸展促進におけるRnd1の関与も示されている[70]。Rnd1とRnd3はp190RhoGAPによりRhoの不活性化を促すことから、この作用が突起伸展を促進する可能性が考えられる[13]。神経突起伸展に伴うRacの活性化には、別のRho familyタンパクであるRhoGの関与が報告されている[71]。RhoGは足場タンパクElmoとRac GEFのDock180と三量体を形成しているが、NGF受容体の活性化はTrioを介しRhoGを活性化し、これがElmo-Dock180を介したRac活性化を促す[71]。<br>神経活動はNMDA受容体活性化による樹状突起伸展を促すが、この作用にはRhoAの抑制とRac、Cdc42の活性化の関与が示唆されている。海馬初代培養神経細胞では、NMDA受容体活性化が細胞内Ca2+依存的にTiam1をリン酸化し、これがRacの活性化を介して樹状突起伸展を促進することが示唆されている[72]。また、海馬初代培養神経細胞では、BDNFによる樹状突起伸展の促進にCLICKIII/CaMKIγが重要であること、この下流でRac GEFのSTEFによるRac活性化が関わることが示唆されている[73]。  


<br>
神経突起の極性形成<br>通常、神経細胞は一本の長い軸索と複数の樹状突起を持ち、軸索と樹状突起では局在化する分子群や細胞骨格の走行が異なる。初代培養神経細胞における軸索と樹状突起の分化には、突起先端でのPI 3-kinaseによるPtdIns(3,4,5)P3産生やPar6/Par3/aPKC複合体の集積が重要である[74, 75]。Rhoファミリー分子群は、このPar6/Par3/aPKCの集積やPI 3-kinaseの制御に重要な働きを担う。軸索になる長い突起の先端にはPI 3-kinaseとRap1bを介してCdc42が集積する[46]。Cdc42の活性化はPar6/Par3/aPKC複合体の局在を制御すると同時にaPKCの活性化を促すことが知られる。Par3はSTEF/Tiam1への結合を介してRacの活性化を誘導することから[76]、突起先端へのPar3の集積は局所的なRacの活性化を介して軸索伸展を促進すると考えられている。さらにRacの活性化は、PI 3-kinaseによるPtdIns(3,4,5)P3産生を増強することから、PI 3-kinase-Rap1b-Cdc42-Par6/Par3-STEF/Tiam1-Rac-PI 3-kinaseからなる正のフィードバック回路が提唱されている[48]。<br>




神経突起の極性形成<br>通常、神経細胞は一本の長い軸索と複数の樹状突起を持ち、軸索と樹状突起では局在化する分子群や細胞骨格の走行が異なる。初代培養神経細胞における軸索と樹状突起の分化には、突起先端でのPI 3-kinaseによるPtdIns(3,4,5)P3産生やPar6/Par3/aPKC複合体の集積が重要である[74, 75]。Rhoファミリー分子群は、このPar6/Par3/aPKCの集積やPI 3-kinaseの制御に重要な働きを担う。軸索になる長い突起の先端にはPI 3-kinaseとRap1bを介してCdc42が集積する[46]。Cdc42の活性化はPar6/Par3/aPKC複合体の局在を制御すると同時にaPKCの活性化を促すことが知られる。Par3はSTEF/Tiam1への結合を介してRacの活性化を誘導することから[76]、突起先端へのPar3の集積は局所的なRacの活性化を介して軸索伸展を促進すると考えられている。さらにRacの活性化は、PI 3-kinaseによるPtdIns(3,4,5)P3産生を増強することから、PI 3-kinase-Rap1b-Cdc42-Par6/Par3-STEF/Tiam1-Rac-PI 3-kinaseからなる正のフィードバック回路が提唱されている[48]。<br>


神経突起のガイダンス<br>神経細胞から伸びた軸索は、様々なガイダンス分子により誘導され、標的細胞とシナプスを形成する。ガイダンス分子は成長円錐に局在する受容体に結合し、Rho familyによる細胞骨格の再編成を誘導して、軸索の伸展方向を決定する。<br>セマフォリン(Semaphorins)は主に軸索反発を引き起こすガイダンス分子である[77]。セマフォリンの一つSema-4Dによる軸索反発には、Sema-4Dの受容体Plexin-B1と複合体を形成するRho GEFのLARGやPDZ-Rho GEFによるRho活性化が重要である[78]。セマフォリンによる軸索反発作用にはPlexinのR-Ras GAP活性が必須である。Plexin-A1とPlexin-B1のR-Ras GAP活性にはRnd1が必須であり、Plexin-D1のR-Ras GAP活性にはRnd2が必須である[79-81]。<br>エフリン(Ephrins)も主に軸索反発を引き起こすガイダンス分子であり、Rhoの活性化とRacの不活性化が関与する[77]。エフリン受容体の一つEphA4はRho GEFであるephexinと複合体を形成するが、ephexinはエフリンによるRho活性化に重要である[82]。さらに、EphA4活性化はRac GAPであるα-chimaerinを介してRacの活性を抑制する[83]。EphA4とα-chimaerinは、共に脊髄正中線における軸索反発作用に重要であることが遺伝子欠損マウスの解析から示された[83, 84]。<br>スリット(Slit)は受容体Roboを介して軸索反発を引き起こすガイダンス分子である。過剰発現系では、Slit-RoboによりRacの活性化が誘導される。さらに、ショウジョウバエの遺伝学的解析から、Slitによる軸索反発にはRacそのものに加え、Ras/Rac GEFのSosやRacエフェクターのPAKの関与が示唆された[85]。また、ショウジョウバエの神経細胞では、Rac特異的GAPであるCrGAP/VilseもSlit-Roboによる軸索反発に関与することが示唆されている[86]。<br>ネトリンは状況に応じて軸索誘引と軸索反発を引き起こすガイダンス分子である。ネトリンはDCCに結合して軸索誘引作用を誘導するが、この作用にはDOCK180やTrioを介したRac活性化が関わると考えられている[87, 88]。<br>損傷後の軸索再生は、myelin-associated glycoprotein (MAG)、Nogo-A、chondroitin sulfate proteoglycans (CSPGs)、oligodendrocyte myelin glycoprotein (OMgp) などのミエリンおよびオリゴデンドロサイト由来の軸索伸展抑制因子により阻害される。これら抑制因子の作用は、C3酵素によるRhoの不活性化やY-27632によるROCK阻害により抑制される[89]。さらに、ROCK-II欠損マウス由来の後根神経節細胞は、Nogo-22やCSPGによる軸索伸展抑制作用が減弱していた[90]。これらの知見から、Rho-ROCK経路の重要性が示唆されてきた。ROCK-II欠損マウスでは、脊髄損傷モデルにおける軸索損傷後の回復が促進することも報告されている[90]。MAGやNogo-AによるNogo受容体(NgR)活性化は、co-receptorのp75とRho GDIの結合を強化して、Rho GDIからのRho遊離を促進する[91]。遊離されたRhoはRac/Rho GEFであるKalirin-9により活性化されると考えられている[92]。MAGによる軸索伸展抑制には、Rho-ROCKによるCRMP-2リン酸化の関与が示唆されている[93]。<br>
神経突起のガイダンス<br>神経細胞から伸びた軸索は、様々なガイダンス分子により誘導され、標的細胞とシナプスを形成する。ガイダンス分子は成長円錐に局在する受容体に結合し、Rho familyによる細胞骨格の再編成を誘導して、軸索の伸展方向を決定する。<br>セマフォリン(Semaphorins)は主に軸索反発を引き起こすガイダンス分子である[77]。セマフォリンの一つSema-4Dによる軸索反発には、Sema-4Dの受容体Plexin-B1と複合体を形成するRho GEFのLARGやPDZ-Rho GEFによるRho活性化が重要である[78]。セマフォリンによる軸索反発作用にはPlexinのR-Ras GAP活性が必須である。Plexin-A1とPlexin-B1のR-Ras GAP活性にはRnd1が必須であり、Plexin-D1のR-Ras GAP活性にはRnd2が必須である[79-81]。<br>エフリン(Ephrins)も主に軸索反発を引き起こすガイダンス分子であり、Rhoの活性化とRacの不活性化が関与する[77]。エフリン受容体の一つEphA4はRho GEFであるephexinと複合体を形成するが、ephexinはエフリンによるRho活性化に重要である[82]。さらに、EphA4活性化はRac GAPであるα-chimaerinを介してRacの活性を抑制する[83]。EphA4とα-chimaerinは、共に脊髄正中線における軸索反発作用に重要であることが遺伝子欠損マウスの解析から示された[83, 84]。<br>スリット(Slit)は受容体Roboを介して軸索反発を引き起こすガイダンス分子である。過剰発現系では、Slit-RoboによりRacの活性化が誘導される。さらに、ショウジョウバエの遺伝学的解析から、Slitによる軸索反発にはRacそのものに加え、Ras/Rac GEFのSosやRacエフェクターのPAKの関与が示唆された[85]。また、ショウジョウバエの神経細胞では、Rac特異的GAPであるCrGAP/VilseもSlit-Roboによる軸索反発に関与することが示唆されている[86]。<br>ネトリンは状況に応じて軸索誘引と軸索反発を引き起こすガイダンス分子である。ネトリンはDCCに結合して軸索誘引作用を誘導するが、この作用にはDOCK180やTrioを介したRac活性化が関わると考えられている[87, 88]。<br>損傷後の軸索再生は、myelin-associated glycoprotein (MAG)、Nogo-A、chondroitin sulfate proteoglycans (CSPGs)、oligodendrocyte myelin glycoprotein (OMgp) などのミエリンおよびオリゴデンドロサイト由来の軸索伸展抑制因子により阻害される。これら抑制因子の作用は、C3酵素によるRhoの不活性化やY-27632によるROCK阻害により抑制される[89]。さらに、ROCK-II欠損マウス由来の後根神経節細胞は、Nogo-22やCSPGによる軸索伸展抑制作用が減弱していた[90]。これらの知見から、Rho-ROCK経路の重要性が示唆されてきた。ROCK-II欠損マウスでは、脊髄損傷モデルにおける軸索損傷後の回復が促進することも報告されている[90]。MAGやNogo-AによるNogo受容体(NgR)活性化は、co-receptorのp75とRho GDIの結合を強化して、Rho GDIからのRho遊離を促進する[91]。遊離されたRhoはRac/Rho GEFであるKalirin-9により活性化されると考えられている[92]。MAGによる軸索伸展抑制には、Rho-ROCKによるCRMP-2リン酸化の関与が示唆されている[93]。<br>
29

回編集