「ミリストイル化」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
19行目: 19行目:
''N''-ミリストイル化は14炭素鎖飽和脂肪酸であるミリスチン酸(図1A)がタンパク質N末端グリシンに不可逆的にアミド結合で付加する脂質修飾である(図1B)。14炭素鎖飽和脂肪酸(C14:0)が一般的であるが、網膜のタンパク質ではC14:1 n-9やC14:2 n-6など不飽和脂肪酸がヘテロに組み込まれることも知られている。また、インシュリン受容体(insulin receptor)やインターロイキン-1(interleukin-1)など一部のタンパク質では例外的にリシンの側鎖のアミノ基に付加することが報告されている。本稿では図1Bで示した飽和脂肪酸C14:0のN末端グリシンへの付加を''N''-ミリストイル化と呼ぶことにする。  
''N''-ミリストイル化は14炭素鎖飽和脂肪酸であるミリスチン酸(図1A)がタンパク質N末端グリシンに不可逆的にアミド結合で付加する脂質修飾である(図1B)。14炭素鎖飽和脂肪酸(C14:0)が一般的であるが、網膜のタンパク質ではC14:1 n-9やC14:2 n-6など不飽和脂肪酸がヘテロに組み込まれることも知られている。また、インシュリン受容体(insulin receptor)やインターロイキン-1(interleukin-1)など一部のタンパク質では例外的にリシンの側鎖のアミノ基に付加することが報告されている。本稿では図1Bで示した飽和脂肪酸C14:0のN末端グリシンへの付加を''N''-ミリストイル化と呼ぶことにする。  


[[Image:Myristoylation Fig1.png|thumb|left|187x102px|図1 構造]] <br><br><br><br><br><br><br>&nbsp;  
[[Image:Myristoylation Fig1.png|thumb|left|300px|図1 構造]]&nbsp;<br><br><br><br>
 
<br>
 
<br><br>
 
<br>
 
<br>
 
<br>&nbsp;  


== ''N''-ミリストイル化タンパク質&nbsp;  ==
== ''N''-ミリストイル化タンパク質&nbsp;  ==
25行目: 35行目:
 ''N''-ミリストイル化を受けるタンパク質は非常に多岐にわたる。Srcキナーゼファミリー、ホスファターゼ、GTP結合タンパク質、カルシウム結合タンパク質、膜結合タンパク質などが同定されている。また、ウィルス構成タンパク質やバクテリア由来タンパク質も''N''-ミリストイル化を受けることが知られている。主な''N''-ミリストイル化タンパク質を表に示す。<br> 近年、アポトーシスの際にカスパーゼによる切断後に''N''-ミリストイル化されるタンパク質の同定が盛んに進められている。アポトーシス促進因子であるBIDや細胞骨格のβ-アクチン(β-actin)はこれらに属する。カスパーゼにより誘導される主な''N''-ミリストイル化タンパク質を表の下段に示す。<br>  ''N''-ミリストイル化タンパク質はインターネット上でデータベース化されており、MYRbase (http://mendel.imp.ac.at/myristate/ ) から閲覧可能である。また、MYRbaseでは''N''-ミリストイル化タンパク質の予測をおこなうことができるので参照されたい。  
 ''N''-ミリストイル化を受けるタンパク質は非常に多岐にわたる。Srcキナーゼファミリー、ホスファターゼ、GTP結合タンパク質、カルシウム結合タンパク質、膜結合タンパク質などが同定されている。また、ウィルス構成タンパク質やバクテリア由来タンパク質も''N''-ミリストイル化を受けることが知られている。主な''N''-ミリストイル化タンパク質を表に示す。<br> 近年、アポトーシスの際にカスパーゼによる切断後に''N''-ミリストイル化されるタンパク質の同定が盛んに進められている。アポトーシス促進因子であるBIDや細胞骨格のβ-アクチン(β-actin)はこれらに属する。カスパーゼにより誘導される主な''N''-ミリストイル化タンパク質を表の下段に示す。<br>  ''N''-ミリストイル化タンパク質はインターネット上でデータベース化されており、MYRbase (http://mendel.imp.ac.at/myristate/ ) から閲覧可能である。また、MYRbaseでは''N''-ミリストイル化タンパク質の予測をおこなうことができるので参照されたい。  


[[Image:Myristoylation Table.png|thumb|left|269x140px|表 主なN-パルミトイル化タンパク質]]<br><br><br><br><br><br><br><br><br><br><br><br>
[[Image:Myristoylation Table.png|thumb|left|500px]]<br><br><br>
 
<br>
 
<br>
 
<br>
 
<br>
 
<br><br><br><br><br><br><br><br><br>


== ''N''-ミリストイル化酵素  ==
== ''N''-ミリストイル化酵素  ==
35行目: 55行目:
== ''N''-ミリストイル化機構&nbsp;  ==
== ''N''-ミリストイル化機構&nbsp;  ==


 ''N''-ミリストイル化コンセンサス配列は多数の合成ペプチドを用いた酵母''S. cerevisiae'' NMTの基質特異性解析から明らかにされている<ref><pubmed>3123478</pubmed></ref>。<br>                    H<sub>2</sub>N-Met<sub>1</sub>-Gly<sub>2</sub>-Xaa<sub>3</sub>-Xaa<sub>4</sub>-Xaa<sub>5</sub>-(Ser/Cys/Thr)<sub>6</sub>-Xaa<sub>7</sub><br>Xaa<sub>3</sub>はプロリン、芳香族アミノ酸および荷電アミノ酸は適さない。Xaa<sub>4</sub>およびXaa<sub>5</sub>は任意のアミノ酸、Xaa<sub>7</sub>はプロリンを除くすべてのアミノ酸が可能である。ヒトNMTでも酵母''S. cerevisiae''同様にモチーフは共有されているが、厳密にはXaa部分のアミノ酸で両者の特異性が異なることが報告されている <ref><pubmed>8486723</pubmed></ref>。『共翻訳時修飾』ではまず、ペプチド鎖がリボソームに結合した状態でメチオニンアミノペプチダーゼ(methionine aminopeptidase)によりN末端メチオニン残基が除去され、露出したグリシンのアミノ基にNMTがミリスチン酸を付加する(図2A)。一方、カスパーゼを介する『翻訳後修飾』ではカスパーゼによるタンパク分解後、N末端に新たに露出したグリシンおよびモチーフに対してNMTがミリスチン酸を付加する(図2B)。 <br>[[Image:Myristoylation Fig2.png|thumb|left|図2 NMTによるN-ミリストイル化機構]]  
 ''N''-ミリストイル化コンセンサス配列は多数の合成ペプチドを用いた酵母''S. cerevisiae'' NMTの基質特異性解析から明らかにされている<ref><pubmed>3123478</pubmed></ref>。<br>                    H<sub>2</sub>N-Met<sub>1</sub>-Gly<sub>2</sub>-Xaa<sub>3</sub>-Xaa<sub>4</sub>-Xaa<sub>5</sub>-(Ser/Cys/Thr)<sub>6</sub>-Xaa<sub>7</sub><br>Xaa<sub>3</sub>はプロリン、芳香族アミノ酸および荷電アミノ酸は適さない。Xaa<sub>4</sub>およびXaa<sub>5</sub>は任意のアミノ酸、Xaa<sub>7</sub>はプロリンを除くすべてのアミノ酸が可能である。ヒトNMTでも酵母''S. cerevisiae''同様にモチーフは共有されているが、厳密にはXaa部分のアミノ酸で両者の特異性が異なることが報告されている <ref><pubmed>8486723</pubmed></ref>。『共翻訳時修飾』ではまず、ペプチド鎖がリボソームに結合した状態でメチオニンアミノペプチダーゼ(methionine aminopeptidase)によりN末端メチオニン残基が除去され、露出したグリシンのアミノ基にNMTがミリスチン酸を付加する(図2A)。一方、カスパーゼを介する『翻訳後修飾』ではカスパーゼによるタンパク分解後、N末端に新たに露出したグリシンおよびモチーフに対してNMTがミリスチン酸を付加する(図2B)。 <br>[[Image:Myristoylation Fig2.png|thumb|left|400px|図2 NMTによるN-ミリストイル化機構]]  
 
<br>
 
<br>
 
<br>
 
<br>
 
<br>
 
<br>
 
<br>


<br><br><br><br><br><br>
<br><br><br><br><br><br>
51行目: 85行目:
 後者の『ミリストイル化+ポリ塩基性アミノ酸クラスター』はミリストイル化タンパク質自体がもつ物理化学的特徴を利用した機構で、ミリストイル化タンパク質の塩基性アミノ酸クラスターと細胞膜の酸性リン脂質(ホスファチジルセリン、ホスファチジルイノシトールなど)の間の電荷的相互作用により膜への親和性を向上させている(④)。Srcが代表例である。膜からの脱離にはいくつかのパターンが報告されているが、リガンド結合によるコンフォーメーション変化によりミリストイル基がタンパク質内部に埋め込まれる機構(⑤)や、タンパク質キナーゼによるリン酸基の負電荷による斥力による機構(⑥)があり、「ミリストイルスイッチ」と呼ばれる。リガンド結合型のスイッチには、カルシウムセンサータンパク質レコヴェリン(recoverin)-カルシウムイオン相互作用がよく知られている。リン酸化型スイッチでは、MARCKS(myristoylated alanine-rich C kinase substrate)が代表例として知られている。興味深いことにSrcはその塩基性アミノ酸モチーフと細胞膜リン脂質との相互作用が強いため、モノリン酸化のみでは膜から脱離しないことが明らかになっている<ref><pubmed>9485361</pubmed></ref>。  
 後者の『ミリストイル化+ポリ塩基性アミノ酸クラスター』はミリストイル化タンパク質自体がもつ物理化学的特徴を利用した機構で、ミリストイル化タンパク質の塩基性アミノ酸クラスターと細胞膜の酸性リン脂質(ホスファチジルセリン、ホスファチジルイノシトールなど)の間の電荷的相互作用により膜への親和性を向上させている(④)。Srcが代表例である。膜からの脱離にはいくつかのパターンが報告されているが、リガンド結合によるコンフォーメーション変化によりミリストイル基がタンパク質内部に埋め込まれる機構(⑤)や、タンパク質キナーゼによるリン酸基の負電荷による斥力による機構(⑥)があり、「ミリストイルスイッチ」と呼ばれる。リガンド結合型のスイッチには、カルシウムセンサータンパク質レコヴェリン(recoverin)-カルシウムイオン相互作用がよく知られている。リン酸化型スイッチでは、MARCKS(myristoylated alanine-rich C kinase substrate)が代表例として知られている。興味深いことにSrcはその塩基性アミノ酸モチーフと細胞膜リン脂質との相互作用が強いため、モノリン酸化のみでは膜から脱離しないことが明らかになっている<ref><pubmed>9485361</pubmed></ref>。  


[[Image:Myristoylation Fig3.png|thumb|left|393x204px|図3 N-ミリストイル化タンパク質の膜結合機構]]<br><br><br><br><br><br><br><br><br><br><br><br><br>
[[Image:Myristoylation Fig3.png|thumb|left|400px|図3 N-ミリストイル化タンパク質の膜結合機構]]<br><br><br><br><br><br><br><br><br><br><br><br><br>


<br><br><br>
<br><br><br>
59行目: 93行目:
 プロテアーゼによるタンパク質分解後の『翻訳後修飾』としての''N''-ミリストイル化が発見されて以来、新規ミリストイル化基質の探索が進められている。  
 プロテアーゼによるタンパク質分解後の『翻訳後修飾』としての''N''-ミリストイル化が発見されて以来、新規ミリストイル化基質の探索が進められている。  


 ''N''-ミリストイル化タンパク質の検出には古くから[<sup>3</sup>H]-あるいは [<sup>125</sup>I]-ミリスチン酸を用いた代謝標識法が用いられている。しかしながら、検出感度が低く存在量の少ないタンパク質に関しては検出が難しい。近年''N''-ミリストイル化のプローブとして代謝ラベル可能なミリスチン酸誘導体が開発されている。末端アルキルを有するミリスチン酸誘導体Alk-C14やアジド基を導入したAz-C12がその代表例である(図4)。前者はclick chemistryを利用して、後者はclick chemistryあるいはStaudinger反応を利用してビオチンなどのタグを導入することができ、各種アフィニティビーズでの精製、酵素消化の後に質量分析により、''N''-ミリストイル化タンパク質を同定することが可能である。また、蛍光色素を導入することで細胞内イメージングに利用することも可能である。詳しくは総説<ref><pubmed>20559317</pubmed></ref>が参考になる。&nbsp; [[Image:Myristoylation Fig4.png|thumb|left|248x102px|図4 N-ミリストイル化タンパク質の検出方法]]  
 ''N''-ミリストイル化タンパク質の検出には古くから[<sup>3</sup>H]-あるいは [<sup>125</sup>I]-ミリスチン酸を用いた代謝標識法が用いられている。しかしながら、検出感度が低く存在量の少ないタンパク質に関しては検出が難しい。近年''N''-ミリストイル化のプローブとして代謝ラベル可能なミリスチン酸誘導体が開発されている。末端アルキルを有するミリスチン酸誘導体Alk-C14やアジド基を導入したAz-C12がその代表例である(図4)。前者はclick chemistryを利用して、後者はclick chemistryあるいはStaudinger反応を利用してビオチンなどのタグを導入することができ、各種アフィニティビーズでの精製、酵素消化の後に質量分析により、''N''-ミリストイル化タンパク質を同定することが可能である。また、蛍光色素を導入することで細胞内イメージングに利用することも可能である。詳しくは総説<ref><pubmed>20559317</pubmed></ref>が参考になる。&nbsp; [[Image:Myristoylation Fig4.png|thumb|left|400px|図4 N-ミリストイル化タンパク質の検出方法]]  
 
<br><br>
 
<br>
 
<br>
 
<br>


<br><br><br><br><br><br><br>
<br><br><br><br><br>


<br>
<br>
97行目: 139行目:
<br>
<br>


(執筆者:関谷敦志、深田優子、深田正紀、担当編集委員:林康紀)
(執筆者:関谷敦志、深田優子、深田正紀&nbsp; 担当編集委員:林康紀)
39

回編集