「熱ショックタンパク質」の版間の差分

提供:脳科学辞典
ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
(4人の利用者による、間の110版が非表示)
1行目: 1行目:
<div align="right"> 
英語名:Heat shock protein 
<font size="+1">石井 宏史</font><br>
''金沢大学''<br>
<font size="+1">[http://researchmap.jp/ToshihideYamashita 山下 俊英]</font><br>
''大阪大学 大学院医学系研究科分子神経科学 分子神経科学''<br>
DOI:<selfdoi /> 原稿受付日:2012年1月25日 原稿完成日:2012年2月2日 修正日:2014年6月15日<br>
担当編集委員:[http://researchmap.jp/michisukeyuzaki 柚崎 通介](慶應義塾大学 医学部生理学)<br>
</div>


英語名:Heat shock protein  独:Hitzeschockproteine 仏:protéine de choc thermique 英略称:HSP
<br><span lang="EN-US"> [[熱ショックタンパク質]](</span><span lang="EN-US">Heat
Shock Protein</span><span lang="EN-US">; </span><span lang="EN-US">HSP)</span><span lang="EN-US">とは細胞が熱、化学物質、虚血などのストレスにさらされた際に発現が上昇して細胞を保護するタンパク質の一群である。分子シャペロンとして機能し、ストレスタンパク質</span><span lang="EN-US">(</span><span lang="EN-US">Stress Protein</span><span lang="EN-US">)</span><span lang="EN-US">とも呼ばれる<ref><pubmed> 4219221 </pubmed></ref></span><span lang="EN-US">。</span><span lang="EN-US">HSP</span><span lang="EN-US">はその分子量により</span><span lang="EN-US">Hsp60</span><span lang="EN-US">、Hsp</span><span lang="EN-US">70</span><span lang="EN-US">、Hsp</span><span lang="EN-US">90</span><span lang="EN-US">などと個別に命名されている。</span><span lang="EN-US"> HSP</span><span lang="EN-US">は細菌からヒトまで広く似た機能を持つことが知られており、そのアミノ酸配列は生物の進化の過程においてよく保存されている<ref><pubmed> 8690199 </pubmed></ref>。</span>


{{box|text= 熱ショックタンパク質とは細胞が熱、化学物質、虚血などのストレスにさらされた際に発現が上昇して細胞を保護する[[wj:タンパク質|タンパク質]]の一群である。合成されたタンパク質に結合することによりタンパク質の[[wj:フォールディング|フォールディング]](折り畳み)とアンフォールディング(折り畳みの解除)を制御する分子シャペロンとしての機能し、ストレスタンパク質(Stress Protein)とも呼ばれる。タンパク質の複合体の形成、タンパク質の移動、選別、細胞周期やシグナリングそしてストレス/アポトーシスから細胞を保護する機能も知られている一方、抗原ペプチドを主要組織適合遺伝子複合体 クラスI/クラスII分子まで輸送して抗原提示を担うことも分かっている。細胞外HSPは抗原提示を担う細胞であるマクロファージや樹上細胞の抗原提示を促すことが知られている<ref><pubmed> 18432918 </pubmed></ref>。分子量によりHsp60、Hsp70、Hsp90などに分類されている。[[wj:真性細菌|細菌]]から[[wj:ヒト|ヒト]]まで広く似た機能を持つことが知られており、その[[wj:一次構造|アミノ酸配列]]は生物の進化の過程においてよく保存されている。}}
<span lang="EN-US"> </span><span lang="EN-US">HSP</span><span lang="EN-US">は合成されたタンパク質に結合することによりタンパク質のフォールディング(折り畳み)を制御する分子シャペロンとしての機能を持ち、また分子シャペロンの多くは</span><span lang="EN-US">HSP</span><span lang="EN-US">である。高温条件化において変性したタンパク質、あるいは新生タンパク質の</span><span lang="EN-US">う</span><span lang="EN-US">ちフォールディングの段階に問題があり、機能できないものなどには</span><span lang="EN-US">HSP</span><span lang="EN-US">が結合してその処理を行</span><span lang="EN-US">う</span><span lang="EN-US">ことが知られている。</span><span lang="EN-US">HSP</span><span lang="EN-US">はこのよ</span><span lang="EN-US">う</span><span lang="EN-US">な高次構造の破壊されたタンパク質の修復およびタンパク質変性の抑制機能を有し、修復が不可能であると判断されたタンパク質はユビキチン化を受け、プロテアソームと呼ばれる酵素複合体へ運搬されて分解される。このフォールディングの段階に異常があり、不良品タンパク質が細胞内に蓄積するとフォールディング病と呼ばれる疾患に陥る。神経変性疾患である筋萎縮性側索硬化症(Amyotrophic
lateral sclerosis; ALS)、アルツハイマー病(Altzheimer’s disease; AD)やパーキンソン病(Parkinson’s
disease; PD)もまたフォールディングの異常に基づくフォールディング病と考えられている<ref><pubmed> 15516999 </pubmed></ref><ref><pubmed> 15459709 </pubmed></ref><ref><pubmed> 15611723 </pubmed></ref>。</span>


==熱ショックタンパク質とは==
&nbsp;
 熱ショックタンパク質とは細胞が熱、[[wj:化学物質|化学物質]]、[[虚血]]などの[[wj:ストレス|ストレス]]にさらされた際に発現が上昇して細胞を保護する[[wj:タンパク質|タンパク質]]の一群である。1962年にイタリアの遺伝学者Ferruccio Ritossaが、熱と代謝脱共役材の[[wj:2,4-ジニトロフェノール|2,4-ジニトロフェノール]]により[[ショウジョウバエ]]の[[wj:染色体|染色体]]の特徴的なパッフィング([[mRNA]]転写により生ずる膨らみ)が誘導されることを報告した<ref><pubmed>PMC248460</pubmed></ref><ref><pubmed> 4219221 </pubmed></ref>。


 この発見により後の熱ショックタンパク質(HSP)あるいはパフに象徴されるストレスタンパク質が認識されることになった。そして熱ショックなどのストレスに続いて合成が増加するショウジョウバエの細胞の特定のタンパク質が初めて1974年に報告された<ref><pubmed>2197269</pubmed></ref>。
&nbsp;


==サブタイプ==
== <span>HSP70による脳虚血保護作用&nbsp;</span>  ==
 HSPはその分子量によりHsp60、Hsp70、Hsp90などに分類されている。
{| class="wikitable"
|+表 熱ショックタンパク質の分類(Wikipediaより改変)
!分子量!![[真正細菌]]!![[wj:古細菌|古細菌]]!![[真核生物]]!!機能
|-
|10kDa||GroES||Hsp10||[[Hsp10]]||[[Hsp60]](GroEL)の機能を補助する[[コシャペロン]]として働く。
|-
|style="white-space:nowrap"|20-30kDa||GrpE||無し||[[HspB]]ファミリー(例:[[Hsp27]]([[HspB1]]))||
|-
|40kDa||DnaJ||Hsp40([[wj:ユリアーキオータ門|ユリアーキオータ]]のみ)||[[Hsp40]]||
|-
|60kDa||GroEL||Hsp60||[[Hsp60]], [[TRiC]]||タンパク質のフォールディング
|-
|70kDa||DnaK||Hsp70(ユリアーキオータのみ)||[[HspA]]ファミリー(例:[[Hsp70]]、[[Hsc70]]、[[Hsp72]]、[[Grp78]]([[BiP]])、[[Hsx70]]、[[mtHsp70]])||タンパク質のフォールディングに関与し、熱に対する耐性を形成させる。タンパク質の[[ミトコンドリア]]や[[葉緑体]]などへの翻訳後輸送に関与。
|-
|90kDa||HtpG、C62.5||無し||[[HspC]]ファミリー(例:[[Hsp90]]、[[Grp94]])||ミスフォールディングされたタンパク質を安定化させる。シグナルタンパク質や[[ステロイド受容体]]や[[転写因子]]、[[チロシンリン酸化|チロシンキナーゼ]]などの機能維持に必要。
|-
|100kDa||style="white-space:nowrap"|ClpB、ClpA、ClpX||無し||[[Hsp104]]、[[Hsp110]]||タンパク質凝集や高温に対する耐性形成に関与。
|}


==構造==
<span lang="EN-US"> 脳虚血の動物モデルや培養組織において、Hsp70を過剰発現させると虚血による損傷が軽減され、神経とグリア細胞に保護作用を示す<ref><pubmed> 10852544 </pubmed></ref><ref><pubmed> 11702045 </pubmed></ref><ref><pubmed> 15299042 </pubmed></ref>。これらの作用はHsp70のカルボキシ端末を介すると考えられている<ref><pubmed> 16292251 </pubmed></ref></span><span lang="EN-US">。</span>
 HSPは[[wj:真性細菌|細菌]]から[[wj:ヒト|ヒト]]まで広く似た機能を持つことが知られており、その[[wj:一次構造|アミノ酸配列]]は生物の進化の過程においてよく保存されている。


 HSP90は3つの構造ドメイン
<span lang="EN-US"> </span>


#N末端ヌクレオチド結合ドメイン N-terminal nucleotide binding domain (NBD) (HSP90阻害タンパクも結合できる。ペプチドも結合する可能性がある。)
== <span>フォールディング病&nbsp;</span>  ==
#対象タンパク質が結合する中間構造
#ホモダイマー結合の際に機能すると考えられているC末端領域


から構成される。
<span> 神経においてβアミロイドを過剰発現して<span lang="EN-US">ADを再構成した系で、Hsp</span></span><span><span lang="EN-US">70を強制発現するとβアミロイドを介する神経毒性が回避される<ref><pubmed> 14973234 </pubmed></ref><ref><pubmed> 16048839 </pubmed></ref>。</span></span><span lang="EN-US">またADマウスモデルにおいてHsp70を過剰発現させると、Aβの発現およびAβの組織沈着そして神経とシナプスの脱落が軽減され認知機能の低下が抑制されると報告されている<ref><pubmed> 21471357 </pubmed></ref>。また</span><span>αシヌクレイン発現による''<span lang="EN-US">Drosophila</span>''パーキンソン病モデルにおいて、ヒト<span lang="EN-US">Hsp70を発現させると、 αシヌクレインによる毒性から免れると報告されている<ref><pubmed> 11823645 </pubmed></ref>。&nbsp;</span></span>


 HSP70は2つの構造ドメイン
&nbsp;&nbsp;
#N末端ヌクレオチド結合ドメイン
#基質結合ドメイン substrate binding domain (SBD)


から構成される。44kDaのN末端ヌクレオチド結合ドメインは[[ATPアーゼ]]活性を持ち、Hsp70シャペロンの[[DnaJ]]と会合する。27kDaのC末端は基質結合ドメインと蓋となる領域でできており、両者ははリンカーによって繋がっている<ref name="MacAry17675458"><pubmed> 17675458 </pubmed></ref>。
== <span>Hsp90βと神経筋接合部&nbsp;</span> ==


==発現==
<span>アセチルコリンレセプターは細胞内で<span lang="EN-US">Rapsynというタンパク質を介してHsp90βと会合し、 神経筋接合部の発達と維持に関わっている<ref><pubmed> 18940591 </pubmed></ref></span></span><span lang="EN-US">。</span>
 熱ショックタンパク質はあらゆる場所で発現している。全ての臓器、異なる細胞構造物に存在している。


==機能==
&nbsp;
===分子機能===
[[Image:PDB 3hsc EBI.jpg|thumb|right|500px|'''図. Hsp70の分子構造と基質結合'''<br>基質結合部位と基質がATP加水分解により捕獲される。<ref name="Turturici21403864"><pubmed> 21403864 </pubmed></ref>]]
 合成されたタンパク質に結合することによりタンパク質の[[wj:フォールディング|フォールディング]](折り畳み)を制御する分子シャペロンとしての機能を持ち、また分子シャペロンの多くはHSPである<ref><pubmed> 4219221 </pubmed></ref>。高温条件化において変性したタンパク質や、あるいはフォールディングの段階に問題があり機能できない新生タンパク質には熱ショックタンパク質が結合することが知られている。熱ショックタンパク質はこのような高次構造が破壊されたタンパク質修復機能やタンパク質[[wj:変性|変性]]抑制機能を有する。修復が不可能なタンパク質は[[ユビキチン]]化を受け、[[プロテアソーム]]と呼ばれる[[wj:酵素|酵素]]複合体へ運搬されて分解される。


===神経系での機能===
== <span><span lang="EN-US">熱ショックタンパク質作動薬&nbsp;</span></span> ==
 フォールディング過程の異常のために不良品タンパク質が細胞内に蓄積するとフォールディング病と呼ばれる一連の疾患を引き起こす。神経変性疾患である[[筋萎縮性側索硬化症]](Amyotrophic lateral sclerosis; ALS)、[[アルツハイマー病]](Altzheimer’s disease)や[[パーキンソン病]](Parkinson’s disease)はフォールディング病と考えられている<ref><pubmed> 15516999 </pubmed></ref>


==== Hsp70による脳虚血保護作用====
<span lang="EN-US"> 熱ショックタンパク質の誘導材であるArimoclimolはマウスALSモデルにおいてHsp70、Hsp90の発現を亢進し、病気の進行を抑えることが分かっている<ref><pubmed> 15034571 </pubmed></ref></span>。また培養運動神経に熱ショックやグルタミン酸を投与した場合にHsp70の発現が阻害されるが、 Arimoclimolを加えるとこれが回避される<ref><pubmed> 12843283 </pubmed></ref>。<span lang="EN-US">製薬会社の</span><span lang="EN-US">CytRxは、 臨床試験第2相を施行している<ref name="urlPhase II/III Randomized, Placebo-Controlled Trial of Arimoclomol in SOD1 Positive Familial Amyotrophic Lateral Sclerosis - Full Text View - ClinicalTrials.gov">{{cite web |url=http://clinicaltrials.gov/ct2/show/NCT00706147 |title=Phase II/III Randomized, Placebo-Controlled Trial of Arimoclomol in SOD1 Positive Familial Amyotrophic Lateral Sclerosis - Full Text View - ClinicalTrials.gov |format= |work= |accessdate=2009-05-18}}</ref></span><span lang="EN-US"></span> &nbsp;
: 動物や培養組織を用いた脳虚血モデルにおいて、神経と[[グリア細胞]]にHsp70を過剰発現させると虚血による損傷が軽減される。このような脳虚血保護作用はHsp70の[[wj:C末端|カルボキシ末端]]を介すると考えられている<ref><pubmed> 16292251 </pubmed></ref>


====神経変性疾患モデルとHsp70====
<span lang="EN-US"><span style="mso-spacerun: yes">&nbsp; &nbsp;</span>ニシキギ科の植物から抽出したquinine methide tritepeneであるCelastrol<ref><pubmed> 1842005 </pubmed></ref>はPD、ALSそしてハンチントン病などの動物モデルにおいて、Hsp70を誘導し、保護的に働く<ref><pubmed> 16092942 </pubmed></ref><ref><pubmed> 16909005 </pubmed></ref><ref><pubmed> 15649316 </pubmed></ref></span>。  
: 神経細胞に[[Βアミロイド|βアミロイド]]を過剰発現するとアルツハイマー病と同様に神経細胞死が引き起こされる。Hsp70を神経細胞に強制発現させるとこのようなβアミロイドによる[[神経毒性]]を軽減することができる<ref><pubmed> 14973234 </pubmed></ref>。またβアミロイドを過剰発現させて作成したマウスアルツハイマー病モデルにおいてもHsp70を神経細胞に過剰発現させると、[[Aβ]]の発現やAβの組織沈着、さらに神経細胞変性と[[シナプス]]減少を軽減し、行動実験における[[認知]]機能の低下が抑制されると報告されている<ref><pubmed> 21471357 </pubmed></ref>。また[[αシヌクレイン]]をショウジョウバエに過剰発現させて作成したハエ[[パーキンソン病]]モデルにおいて、ヒトHsp70を過剰発現させると、 αシヌクレインによる細胞死を防ぐことができると報告されている<ref><pubmed> 11823645 </pubmed></ref>。


==== Hsp90βと神経筋接合部====
&nbsp;&nbsp;&nbsp;&nbsp;
:  [[アセチルコリン]]受容体は筋細胞内で[[ラプシン]]を介してHsp90βと会合し、 [[神経筋接合部]]の発達と維持に関わっている<ref><pubmed> 18940591 </pubmed></ref>。


====熱ショックによる前処理と神経保護作用====
== <span>熱ショックによる前処理と神経保護作用&nbsp;</span> ==
: あらかじめ熱ショックを組織に加えることにより、Hsp70、[[Hsc70]]、[[Hsp32]]や[[Hsp27]]が亢進し、神経保護作用を示すことが分かっている<ref><pubmed> 10341239 </pubmed></ref>。熱ストレスによりHsc70が[[大脳皮質]][[神経細胞]]のシナプスに局在し、[[Hsp40]]と会合し、変性タンパク質をリフォールディングする。また熱ストレスによりグリア細胞においてHsp70が産生され、細胞間を移動し、隣り合う神経細胞の突起に輸送される<ref><pubmed> 3947949 </pubmed></ref>。この反応を応用し、[[坐骨神経]]細胞の切断端にHsp70/Hsc70を細胞外から添加すると、神経細胞死が抑制される<ref><pubmed> 9222601 </pubmed></ref>。


====シャペロン介在オートファジーによるハンチントン病の治療====
<span> あらかじめ熱ショックを組織に加えることにより、<span lang="EN-US">Hsp70、Hsc70、Hsp32やHsp27が亢進し、神経保護作用を示すことが分かっている<ref><pubmed> 10341239 </pubmed></ref><ref><pubmed> 11842441 </pubmed></ref><ref><pubmed> 16595740 </pubmed></ref><ref><pubmed> 11756523 </pubmed></ref><ref><pubmed> 17443800 </pubmed></ref><ref><pubmed> 10646515 </pubmed></ref><ref><pubmed> 10686353 </pubmed></ref>。熱ストレスによりHsc70が大脳皮質のシナプスに局在し、Hsp40と会合し、変性タンパク質をリフォールディングする<ref><pubmed> 17203483 </pubmed></ref>。また熱ストレスによりグリア細胞からHsp70が産生され、細胞間を移動し、隣り合う神経細胞の突起に輸送されることが分かっている<ref><pubmed> 3947949 </pubmed></ref>。</span><span style="color:black">この生理反応を応用し、坐骨神経細胞の切断端にHsp70/Hsc70を細胞外から添加すると神経細胞死が抑制されると報告されている<ref><pubmed> 9222601 </pubmed></ref><ref><pubmed> 15270081 </pubmed></ref>。</span></span> &nbsp;
: マウス[[ハンチントン病]]モデルでは、神経細胞に伸長[[ポリグルタミン]]鎖が蓄積する。Hsc70の伸長ポリグルタミン鎖への結合を促進すると、伸長ポリグルタミン鎖が[[リソソーム]]に運ばれ、[[オートファジー]]により分解される。これにより行動異常が改善され、寿命が延びる<ref><pubmed> 20190739 </pubmed></ref>。


====自己免疫疾患とHsp70====
&nbsp;&nbsp;  
: Hsp70は[[wj:抗原|抗原]]に結合して、[[wj:主要組織適合遺伝子複合体|MHCIおよびMHCII]]依存的に[[wj:抗原|抗原]]性を高める<ref name="Turturici21403864"><pubmed> 21403864 </pubmed></ref>。また[[多発性硬化症]](multiple sclerosis)の[[動物モデル]]である実験的[[自己免疫性脳脊髄炎]](experimental autoimmune encephalomyelitis)の発症および増悪にHsp70が関わる<ref name="Turturici21403864"><pubmed> 21403864 </pubmed></ref>。多発性硬化症患者の[[脳脊髄液]]には、Hsp70に対する自己抗体が、運動神経疾患の患者と比較して高い頻度で観察される。そして多発性硬化症患者において、自己抗原である[[ミエリン塩基性タンパク質]](myelin basic protein; MBP)や[[Myelin proteolipid protein]](PLP)とHsp70との会合も観察されている。しかし一方でHsp70が[[wj:ナチュラルキラー細胞|ナチュラルキラー細胞]]に働きかけて自己免疫性脳脊髄炎の増悪を抑制するとの報告もあるため[[中枢神経系]]の[[wj:自己免疫疾患|自己免疫疾患]]における役割が議論されている<ref name="Turturici21403864"><pubmed> 21403864 </pubmed></ref>。


==== 熱ショックタンパク質作動薬====
== <span lang="EN-US">Hsc70の発現と神経変性疾患&nbsp;</span> ==
: 熱ショックタンパク質の[[作動薬]]である[[w:Arimoclomol|Arimoclomol]]は、マウスALSモデルにおいてHsp70、Hsp90の発現を亢進させ、病気の進行を抑えることが分かっている<ref name="Arimo"><pubmed> 15034571 </pubmed></ref>。培養脊髄組織に熱ショックあるいは[[グルタミン酸]]処理によりストレスを与えた場合に、アストロサイトにおいてHsp70の発現が上昇する。しかし同様のストレスを与えても、運動神経におけるHsp70の発現は上昇しない。このようなストレス下で、Arimoclomolを加えると、神経細胞のHsp70の発現が上昇して神経保護作用を示す<ref name="Arimo"><pubmed> 15034571 </pubmed></ref>。製薬会社の[[w:CytRx|CytRx]]社は、[[wj:臨床試験|臨床試験]]第2相を施行している<ref>[http://clinicaltrials.gov/ct2/show/NCT00706147 Phase II/III Randomized, Placebo-Controlled Trial of Arimoclomol in SOD1 Positive Familial Amyotrophic Lateral Sclerosis - Full Text View - ClinicalTrials.gov]</ref>。


: [[wj:ニシキギ科|ニシキギ科]]の植物から抽出した[[w:Quinone methide|キノンメチド]][[wj:トリテルペン|トリテルペン]]である[[w:Celastrol|Celastrol]]はパーキンソン病、ALSそして[[ハンチントン病]]などの動物モデルにおいて、Hsp70を誘導し、保護的に働く<ref><pubmed> 16092942 </pubmed></ref>。
<span lang="EN-US"> Hsc70は神経組織において発現が高い。ALSの病変となる脊髄では比較的低レベルのHsc70が発現しているが、ADの病変となる海馬や内嗅皮質においては高レベルの発現が見られる。そしてPDの病変箇所である黒質においては中間の発現レベルであることが確認されており、丁度それぞれの疾患の発症頻度とよく逆相関しているため、Hsc70の神経変性疾患における神経保護作用が示唆されている<ref><pubmed> 17441507 </pubmed></ref>。</span>


==関連項目==
<span lang="EN-US"> </span><br> <span lang="EN-US">== 参考文献<span style="mso-spacerun: yes">&nbsp; </span>==</span> &nbsp;<br> <br> <references />
*[[プロテアソーム]]
*[[ユビキチン]]


== 参考文献  ==
<br>  
<references />
 
執筆者:石井宏史、担当編集委員:柚崎通介

2012年1月21日 (土) 15:55時点における版

英語名:Heat shock protein 


 熱ショックタンパク質Heat Shock Protein; HSP)とは細胞が熱、化学物質、虚血などのストレスにさらされた際に発現が上昇して細胞を保護するタンパク質の一群である。分子シャペロンとして機能し、ストレスタンパク質Stress Proteinとも呼ばれる[1]HSPはその分子量によりHsp60、Hsp70、Hsp90などと個別に命名されている。 HSPは細菌からヒトまで広く似た機能を持つことが知られており、そのアミノ酸配列は生物の進化の過程においてよく保存されている[2]

 HSPは合成されたタンパク質に結合することによりタンパク質のフォールディング(折り畳み)を制御する分子シャペロンとしての機能を持ち、また分子シャペロンの多くはHSPである。高温条件化において変性したタンパク質、あるいは新生タンパク質のちフォールディングの段階に問題があり、機能できないものなどにはHSPが結合してその処理を行ことが知られている。HSPはこのよな高次構造の破壊されたタンパク質の修復およびタンパク質変性の抑制機能を有し、修復が不可能であると判断されたタンパク質はユビキチン化を受け、プロテアソームと呼ばれる酵素複合体へ運搬されて分解される。このフォールディングの段階に異常があり、不良品タンパク質が細胞内に蓄積するとフォールディング病と呼ばれる疾患に陥る。神経変性疾患である筋萎縮性側索硬化症(Amyotrophic lateral sclerosis; ALS)、アルツハイマー病(Altzheimer’s disease; AD)やパーキンソン病(Parkinson’s disease; PD)もまたフォールディングの異常に基づくフォールディング病と考えられている[3][4][5]

 

 

HSP70による脳虚血保護作用 

 脳虚血の動物モデルや培養組織において、Hsp70を過剰発現させると虚血による損傷が軽減され、神経とグリア細胞に保護作用を示す[6][7][8]。これらの作用はHsp70のカルボキシ端末を介すると考えられている[9]

 

フォールディング病 

 神経においてβアミロイドを過剰発現してADを再構成した系で、Hsp70を強制発現するとβアミロイドを介する神経毒性が回避される[10][11]またADマウスモデルにおいてHsp70を過剰発現させると、Aβの発現およびAβの組織沈着そして神経とシナプスの脱落が軽減され認知機能の低下が抑制されると報告されている[12]。またαシヌクレイン発現によるDrosophilaパーキンソン病モデルにおいて、ヒトHsp70を発現させると、 αシヌクレインによる毒性から免れると報告されている[13]。 

  

Hsp90βと神経筋接合部 

アセチルコリンレセプターは細胞内でRapsynというタンパク質を介してHsp90βと会合し、 神経筋接合部の発達と維持に関わっている[14]

 

熱ショックタンパク質作動薬 

 熱ショックタンパク質の誘導材であるArimoclimolはマウスALSモデルにおいてHsp70、Hsp90の発現を亢進し、病気の進行を抑えることが分かっている[15]。また培養運動神経に熱ショックやグルタミン酸を投与した場合にHsp70の発現が阻害されるが、 Arimoclimolを加えるとこれが回避される[16]製薬会社のCytRxは、 臨床試験第2相を施行している[17]  

   ニシキギ科の植物から抽出したquinine methide tritepeneであるCelastrol[18]はPD、ALSそしてハンチントン病などの動物モデルにおいて、Hsp70を誘導し、保護的に働く[19][20][21]

    

熱ショックによる前処理と神経保護作用 

 あらかじめ熱ショックを組織に加えることにより、Hsp70、Hsc70、Hsp32やHsp27が亢進し、神経保護作用を示すことが分かっている[22][23][24][25][26][27][28]。熱ストレスによりHsc70が大脳皮質のシナプスに局在し、Hsp40と会合し、変性タンパク質をリフォールディングする[29]。また熱ストレスによりグリア細胞からHsp70が産生され、細胞間を移動し、隣り合う神経細胞の突起に輸送されることが分かっている[30]この生理反応を応用し、坐骨神経細胞の切断端にHsp70/Hsc70を細胞外から添加すると神経細胞死が抑制されると報告されている[31][32]  

  

Hsc70の発現と神経変性疾患 

 Hsc70は神経組織において発現が高い。ALSの病変となる脊髄では比較的低レベルのHsc70が発現しているが、ADの病変となる海馬や内嗅皮質においては高レベルの発現が見られる。そしてPDの病変箇所である黒質においては中間の発現レベルであることが確認されており、丁度それぞれの疾患の発症頻度とよく逆相関しているため、Hsc70の神経変性疾患における神経保護作用が示唆されている[33]

 
== 参考文献  ==  

  1. Tissières, A., Mitchell, H.K., & Tracy, U.M. (1974).
    Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. Journal of molecular biology, 84(3), 389-98. [PubMed:4219221] [WorldCat] [DOI]
  2. Hirakawa, T., Rokutan, K., Nikawa, T., & Kishi, K. (1996).
    Geranylgeranylacetone induces heat shock proteins in cultured guinea pig gastric mucosal cells and rat gastric mucosa. Gastroenterology, 111(2), 345-57. [PubMed:8690199] [WorldCat] [DOI]
  3. Selkoe, D.J. (2004).
    Cell biology of protein misfolding: the examples of Alzheimer's and Parkinson's diseases. Nature cell biology, 6(11), 1054-61. [PubMed:15516999] [WorldCat] [DOI]
  4. Forman, M.S., Trojanowski, J.Q., & Lee, V.M. (2004).
    Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nature medicine, 10(10), 1055-63. [PubMed:15459709] [WorldCat] [DOI]
  5. Muchowski, P.J., & Wacker, J.L. (2005).
    Modulation of neurodegeneration by molecular chaperones. Nature reviews. Neuroscience, 6(1), 11-22. [PubMed:15611723] [WorldCat] [DOI]
  6. Rajdev, S., Hara, K., Kokubo, Y., Mestril, R., Dillmann, W., Weinstein, P.R., & Sharp, F.R. (2000).
    Mice overexpressing rat heat shock protein 70 are protected against cerebral infarction. Annals of neurology, 47(6), 782-91. [PubMed:10852544] [WorldCat]
  7. Hoehn, B., Ringer, T.M., Xu, L., Giffard, R.G., Sapolsky, R.M., Steinberg, G.K., & Yenari, M.A. (2001).
    Overexpression of HSP72 after induction of experimental stroke protects neurons from ischemic damage. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 21(11), 1303-9. [PubMed:11702045] [WorldCat] [DOI]
  8. Giffard, R.G., Xu, L., Zhao, H., Carrico, W., Ouyang, Y., Qiao, Y., ..., & Yenari, M.A. (2004).
    Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury. The Journal of experimental biology, 207(Pt 18), 3213-20. [PubMed:15299042] [WorldCat] [DOI]
  9. Sun, Y., Ouyang, Y.B., Xu, L., Chow, A.M., Anderson, R., Hecker, J.G., & Giffard, R.G. (2006).
    The carboxyl-terminal domain of inducible Hsp70 protects from ischemic injury in vivo and in vitro. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 26(7), 937-50. [PubMed:16292251] [WorldCat] [DOI]
  10. Magrané, J., Smith, R.C., Walsh, K., & Querfurth, H.W. (2004).
    Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(7), 1700-6. [PubMed:14973234] [PMC] [WorldCat] [DOI]
  11. Smith, R.C., Rosen, K.M., Pola, R., & Magrané, J. (2005).
    Stress proteins in Alzheimer's disease. International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group, 21(5), 421-31. [PubMed:16048839] [WorldCat] [DOI]
  12. Hoshino, T., Murao, N., Namba, T., Takehara, M., Adachi, H., Katsuno, M., ..., & Mizushima, T. (2011).
    Suppression of Alzheimer's disease-related phenotypes by expression of heat shock protein 70 in mice. The Journal of neuroscience : the official journal of the Society for Neuroscience, 31(14), 5225-34. [PubMed:21471357] [PMC] [WorldCat] [DOI]
  13. Auluck, P.K., Chan, H.Y., Trojanowski, J.Q., Lee, V.M., & Bonini, N.M. (2002).
    Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science (New York, N.Y.), 295(5556), 865-8. [PubMed:11823645] [WorldCat] [DOI]
  14. Luo, S., Zhang, B., Dong, X.P., Tao, Y., Ting, A., Zhou, Z., ..., & Mei, L. (2008).
    HSP90 beta regulates rapsyn turnover and subsequent AChR cluster formation and maintenance. Neuron, 60(1), 97-110. [PubMed:18940591] [PMC] [WorldCat] [DOI]
  15. Kieran, D., Kalmar, B., Dick, J.R., Riddoch-Contreras, J., Burnstock, G., & Greensmith, L. (2004).
    Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nature medicine, 10(4), 402-5. [PubMed:15034571] [WorldCat] [DOI]
  16. Batulan, Z., Shinder, G.A., Minotti, S., He, B.P., Doroudchi, M.M., Nalbantoglu, J., ..., & Durham, H.D. (2003).
    High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. The Journal of neuroscience : the official journal of the Society for Neuroscience, 23(13), 5789-98. [PubMed:12843283] [PMC] [WorldCat]
  17. "Phase II/III Randomized, Placebo-Controlled Trial of Arimoclomol in SOD1 Positive Familial Amyotrophic Lateral Sclerosis - Full Text View - ClinicalTrials.gov". Retrieved 2009-05-18.
  18. Zhou, B.N. (1991).
    Some progress on the chemistry of natural bioactive terpenoids from Chinese medicinal plants. Memorias do Instituto Oswaldo Cruz, 86 Suppl 2, 219-26. [PubMed:1842005] [WorldCat] [DOI]
  19. Cleren, C., Calingasan, N.Y., Chen, J., & Beal, M.F. (2005).
    Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity. Journal of neurochemistry, 94(4), 995-1004. [PubMed:16092942] [WorldCat] [DOI]
  20. Kiaei, M., Kipiani, K., Petri, S., Chen, J., Calingasan, N.Y., & Beal, M.F. (2005).
    Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neuro-degenerative diseases, 2(5), 246-54. [PubMed:16909005] [WorldCat] [DOI]
  21. Wang, J., Gines, S., MacDonald, M.E., & Gusella, J.F. (2005).
    Reversal of a full-length mutant huntingtin neuronal cell phenotype by chemical inhibitors of polyglutamine-mediated aggregation. BMC neuroscience, 6, 1. [PubMed:15649316] [PMC] [WorldCat] [DOI]
  22. Karunanithi, S., Barclay, J.W., Robertson, R.M., Brown, I.R., & Atwood, H.L. (1999).
    Neuroprotection at Drosophila synapses conferred by prior heat shock. The Journal of neuroscience : the official journal of the Society for Neuroscience, 19(11), 4360-9. [PubMed:10341239] [PMC] [WorldCat]
  23. Karunanithi, S., Barclay, J.W., Brown, I.R., Robertson, R.M., & Atwood, H.L. (2002).
    Enhancement of presynaptic performance in transgenic Drosophila overexpressing heat shock protein Hsp70. Synapse (New York, N.Y.), 44(1), 8-14. [PubMed:11842441] [WorldCat] [DOI]
  24. Neal, S.J., Karunanithi, S., Best, A., So, A.K., Tanguay, R.M., Atwood, H.L., & Westwood, J.T. (2006).
    Thermoprotection of synaptic transmission in a Drosophila heat shock factor mutant is accompanied by increased expression of Hsp83 and DnaJ-1. Physiological genomics, 25(3), 493-501. [PubMed:16595740] [WorldCat] [DOI]
  25. Kelty, J.D., Noseworthy, P.A., Feder, M.E., Robertson, R.M., & Ramirez, J.M. (2002).
    Thermal preconditioning and heat-shock protein 72 preserve synaptic transmission during thermal stress. The Journal of neuroscience : the official journal of the Society for Neuroscience, 22(1), RC193. [PubMed:11756523] [PMC] [WorldCat]
  26. Xiao, C., Mileva-Seitz, V., Seroude, L., & Robertson, R.M. (2007).
    Targeting HSP70 to motoneurons protects locomotor activity from hyperthermia in Drosophila. Developmental neurobiology, 67(4), 438-55. [PubMed:17443800] [WorldCat] [DOI]
  27. Bechtold, D.A., Rush, S.J., & Brown, I.R. (2000).
    Localization of the heat-shock protein Hsp70 to the synapse following hyperthermic stress in the brain. Journal of neurochemistry, 74(2), 641-6. [PubMed:10646515] [WorldCat] [DOI]
  28. Bechtold, D.A., & Brown, I.R. (2000).
    Heat shock proteins Hsp27 and Hsp32 localize to synaptic sites in the rat cerebellum following hyperthermia. Brain research. Molecular brain research, 75(2), 309-20. [PubMed:10686353] [WorldCat] [DOI]
  29. Chen, S., & Brown, I.R. (2007).
    Translocation of constitutively expressed heat shock protein Hsc70 to synapse-enriched areas of the cerebral cortex after hyperthermic stress. Journal of neuroscience research, 85(2), 402-9. [PubMed:17203483] [WorldCat] [DOI]
  30. Tytell, M., Greenberg, S.G., & Lasek, R.J. (1986).
    Heat shock-like protein is transferred from glia to axon. Brain research, 363(1), 161-4. [PubMed:3947949] [WorldCat] [DOI]
  31. Houenou, L.J., Li, L., Lei, M., Kent, C.R., & Tytell, M. (1996).
    Exogenous heat shock cognate protein Hsc 70 prevents axotomy-induced death of spinal sensory neurons. Cell stress & chaperones, 1(3), 161-6. [PubMed:9222601] [PMC] [WorldCat] [DOI]
  32. Tidwell, J.L., Houenou, L.J., & Tytell, M. (2004).
    Administration of Hsp70 in vivo inhibits motor and sensory neuron degeneration. Cell stress & chaperones, 9(1), 88-98. [PubMed:15270081] [PMC] [WorldCat] [DOI]
  33. Chen, S., & Brown, I.R. (2007).
    Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell stress & chaperones, 12(1), 51-8. [PubMed:17441507] [PMC] [WorldCat] [DOI]


執筆者:石井宏史、担当編集委員:柚崎通介