「盲視」の版間の差分

8,589 バイト追加 、 2013年2月27日 (水)
編集の要約なし
編集の要約なし
編集の要約なし
7行目: 7行目:
== 盲視とは ==
== 盲視とは ==


Weiskrantzの定義 1995
盲視とは、[[第一次視覚野]]が損傷した患者において、現象的な視覚意識がない(phenomenal blindness)にもかかわらず見られる、視覚誘導性の自発的な反応のことを指す<ref name=ref4>'''L. Weiskrantz'''<br>Blindsight: a case study spanning 35 years and new developments<br>''Oxford University Press.'': 2009</ref>。


Weiskrantz<ref name=ref4>'''L. Weiskrantz'''<br>Blindsight: a case study spanning 35 years and new developments<br>''Oxford University Press.'': 2009</ref>
[[第一次視覚野]]は大脳皮質での視覚情報が最初に入ってくる領域であり、左右の半球でそれぞれ右左半分ずつの視野の情報を処理している。たとえば左側の[[第一次視覚野]]全体が損傷すると、左右の眼ともに右半分の視野が見えなくなる。このような症状は[[同名半盲]]と呼ばれる。盲視はそのような患者の一部でのみ見られる。


第一次視覚野は大脳皮質での視覚情報が最初に入ってくる領域であり、左右の半球でそれぞれ右左半分ずつの視野の情報を処理している。たとえば左側の第一次視覚野全体が損傷すると、左右の眼ともに右半分の視野が見えなくなる。このような症状は同名半盲と呼ばれる。ところが、このような患者の中に盲視という不思議な能力を持つ例が報告されている。同名半盲では損傷視野に提示された視覚刺激が見えるかどうか聞くと見えないと答える。しかし、質問を変えて、視覚刺激が上下のどちらにあるか答えてもらうかまたは指さしで視覚刺激の位置を当ててもらうと、偶然よりも高い成績がみられることがある。これを盲視という1)。
盲視という現象は視覚情報の処理(光点の位置を当てる)と視覚意識(光点が眼前に見えたという経験をする)とが乖離しうること、そしてそれらがべつの脳部位で処理されているということを示している。
 
ヒトでの[[第一次視覚野]]損傷後の残存視覚については1973年のPoppelらの仕事<ref><pubmed> 4774871 </pubmed></ref>によって最初に報告された。ひきつづきWeiskrantzらがBrainに詳細な報告を行い<ref><pubmed> 4434190 </pubmed></ref>、"blindsight" (盲視)と呼ばれるようになった<ref><pubmed> 4132425 </pubmed></ref>。
 
歴史的にいえば、[[第一次視覚野]]損傷後の残存視覚についてはじつはヒトでの知見の前にすでにサルでの知見がWeiskrantzらの研究グループから報告されていた<ref><pubmed> 4963569 </pubmed></ref>。しかし、厳密な意味で盲視の存在を証明するためには、「残存視覚があること」を証明するだけでなく、「現象的な視覚意識がない」ことを証明しなければならない。これは言語報告を使えないサルなどの動物の場合には原理的な問題となる。ヒト盲視で見られる現象と同様な行動の乖離を示した実験は、Weiskrantzの同僚であるAlan Coweyらによって1995年に報告された<ref><pubmed> 7816139 </pubmed></ref>。
 
包括的なレビューとしてはPetra StoerigとAlan CoweyによるBrain 1997<ref><pubmed> 9126063 </pubmed></ref>がある。また、日本語で読むことができる総説としては<ref>'''吉田 正俊'''<br>盲視の神経科学<br>''Clinical Neuroscience'': 30(8): 955-957</ref><ref>'''吉田 正俊'''<br>盲視の神経機構<br>''BRAIN and NERVE'': (In press)</ref>などがある。
 
== 盲視で出来ること、出来ないこと(1) ヒト ==
 
ヒト盲視患者では動き刺激の方向弁別の成績は非常に高い<ref><pubmed> 7597090 </pubmed></ref>。一方で、線分の方位弁別の成績は偶然のレベルに留まっている<ref><pubmed> 8677261 </pubmed></ref>


盲視という現象は視覚情報の処理(光点の位置を当てる)と視覚意識(光点が眼前に見えたという経験をする)とが乖離しうること、そしてそれらがべつの脳部位で処理されているということを示している。
グレーティング刺激の検出課題において、輝度コントラストに対する閾値は通常と比べて上昇している<ref name=ref6><pubmed> 17000999 </pubmed></ref>。また、空間周波数の影響を調べた論文<ref><pubmed> 12956717 </pubmed></ref>によると、盲視では空間周波数の高い成分(> 4 cycles / deg)への感度が落ちている。
 
色情報の検出、弁別は可能であるとする報告<ref><pubmed> 8058800 </pubmed></ref><ref name=ref6><pubmed> 11703461 </pubmed></ref>がある。しかし一方で、V1損傷または半球皮質切除によるヒト盲視患者では青-黄の色チャネル(koniocellular経路)の刺激を検出することが出来ないという報告もある<ref><pubmed> 19320547 </pubmed></ref><ref><pubmed> 12176359 </pubmed></ref><ref><pubmed> 17156217 </pubmed></ref>。
 
face affective blindsight
 
== 盲視で出来ること、出来ないこと(2) 動物モデル ==
 
この項では、マカクザルの片側の第一次視覚野を損傷させた盲視動物モデルでの知見をまとめる。
 
サッカード レバープレス(Mohler)
 
検出課題 1995 Stoerig
Grossも。
 
視覚誘導性サッカード課題において、損傷視野に提示した視覚標的の輝度コントラストに対する閾値は正常視野と比べて上昇していた<ref name=ref1><pubmed> 18923028 </pubmed></ref>。また、サッカードの終止点は不正確であり、軌道も正常視野へのサッカードと比べてより直線的になっていた。このことはV1損傷が視覚だけでなく運動コントロールにも影響を与えていることが示唆している。また、応答潜時は分布が狭くなっており、計算論的解析から、V1損傷が意志決定の過程にも影響を与えていることが示唆している。
 
記憶誘導性サッカード課題を用いて、盲視モデル動物が見えていない部分に提示された視覚刺激の位置を2秒間記憶することが出来るかどうかを検証したところ、盲視モデル動物はこの課題を90%以上の成績で行うことができた<ref name=ref2><pubmed> 21411664 </pubmed></ref>。また、注意誘因課題において、キュー刺激を事前に提示することによって視覚誘導性サッカードの応答潜時は短くなった<ref><pubmed> 20521856 </pubmed></ref>。これらのことは盲視の動物モデルでは反射的な視覚情報処理だけではなく、高次認知機能も遂行可能であることを示唆している。


== 盲視で出来ること、出来ないこと ==
盲視モデル動物がムービークリップを受動的に見ている間の眼の動きを[[サリエンシー]]計算論モデルによって解析することによって、盲視で利用可能な情報処理のチャンネルを網羅的に調べた報告がある<ref><pubmed> 22748317 </pubmed></ref>。盲視モデル動物では「輝度)」「赤-緑」「青-黄」「動き」の情報は利用できるが、「傾き」の情報は利用できなかった。同じ動物に等輝度色刺激を提示して刺激を検出できるかどうか検証したところ、赤-緑、青-黄どちらの刺激ともに偶然より高い成績で検出できることが判明した。この結果は盲視モデル動物で色情報の処理が出来るとするこれまでの報告<ref name=ref6></ref>と整合的だった。


text
== 盲視での意識経験 ==


== 盲視に関わる神経回路  ==
盲視の被験者は視覚刺激に対してまったく意識経験がないわけではないらしい。たとえば有名な被験者のGY氏は、視覚刺激の強度が高いときにはしばしば「何かある感じ」がすると報告する<ref name=ref5><pubmed> 9549486 </pubmed></ref>。しかしそれはいわゆる視覚経験とは違うらしい。たとえばGY氏はその感覚について「黒い影が黒い背景上を動いている感じ」と表現する(ただし、この表現はあくまで比喩であることを強調している)。Weiskrantzはこのような盲視をtypeII盲視と呼んで、このような意識経験を全く持たないtype I 盲視と区別している<ref name=ref4></ref>。


Yoshida 2012 <ref><pubmed> 22748317 </pubmed></ref>
いっぽうでZekiはこのような感覚は視覚経験の一種であり、Riddoch症候群として捉えるべきであると主張している<ref name=ref5></ref>。Riddoch現象とは、第一次視覚野を損傷した患者で、静止した物体はまったく見えないのに対して、動いているものに関しては感知できる現象のことを指す<ref>'''G. Riddoch'''<br>Dissociation of visual perceptions due to occipital injuries, with especial reference to appreciation of movement<br>''Brain'': 1917; 40: 15–57</ref>


== 機能回復トレーニングと可塑性の寄与  ==
== 機能回復トレーニングと可塑性の寄与  ==


Sahraieらの研究<ref><pubmed> 17000999 </pubmed></ref>では、12人の視覚皮質損傷患者を被験者として視覚弁別のトレーニングを行った。視覚刺激としては格子模様を用い、刺激が試行の期間1または期間2のどちらに提示されたかを被験者は答える。このようなトレーニングを被験者は自宅で継続して行うことでその成績は数ヶ月をかけて向上した。
Sahraieらの研究<ref name=ref6></ref>では、12人の視覚皮質損傷患者を被験者として視覚弁別のトレーニングを行った。視覚刺激としては格子模様を用い、刺激が試行の期間1または期間2のどちらに提示されたかを被験者は答える。このようなトレーニングを被験者は自宅で継続して行うことでその成績は数ヶ月をかけて向上した。


Huxlinらによる報告<ref><pubmed> 19339594 </pubmed></ref>では、5人の患者でランダムドットモーション刺激の方向弁別のトレーニングを行ったところ、9-18ヶ月後には正常レベルに近いところまで感度が向上していた。これらの研究での被験者は成人であり、脳損傷を受けてから年月が経っている。よって、これらの研究は、成人の脳でも大規模な構造的な変化によって機能回復が起こっている可能性を示唆している。
Huxlinらによる報告<ref><pubmed> 19339594 </pubmed></ref>では、5人の患者でランダムドットモーション刺激の方向弁別のトレーニングを行ったところ、9-18ヶ月後には正常レベルに近いところまで感度が向上していた。これらの研究での被験者は成人であり、脳損傷を受けてから年月が経っている。よって、これらの研究は、成人の脳でも大規模な構造的な変化によって機能回復が起こっている可能性を示唆している。


マカクザルを動物モデルとして用いた研究では、第一次視覚野の切除後にも視覚弁別能力が残存する、つまりマカクザルでも盲視が起こることが明らかになっている<ref><pubmed> 4963569 </pubmed></ref><ref name=ref3><pubmed> 401874 </pubmed></ref><ref name=ref1><pubmed> 18923028 </pubmed></ref>。機能回復トレーニングとして視覚誘導性サッカード課題も用いて、成績の時間経過を調べたところ、術後1週間では、損傷の反対側の視野へのサッカードは上下の2カ所を弁別できなくなっていた。継続的にトレーニングを行ったところ、およそ8週間程度で損傷視野の成績はほぼ正常視野と同等のレベルまで回復した。つまり、動物モデルにおいても数ヶ月の機能回復トレーニングによって、盲視の能力が回復することが明らかになった<ref name=ref1></ref>。
マカクザルを動物モデルとして用いた研究では、第一次視覚野の切除後にも視覚弁別能力が残存する、つまりマカクザルでも盲視が起こることが明らかになっている<ref><pubmed> 4963569 </pubmed></ref><ref name=ref3><pubmed> 401874 </pubmed></ref><ref name=ref1></ref>。機能回復トレーニングとして視覚誘導性サッカード課題も用いて、成績の時間経過を調べたところ、術後1週間では、損傷の反対側の視野へのサッカードは上下の2カ所を弁別できなくなっていた。継続的にトレーニングを行ったところ、およそ8週間程度で損傷視野の成績はほぼ正常視野と同等のレベルまで回復した。つまり、動物モデルにおいても数ヶ月の機能回復トレーニングによって、盲視の能力が回復することが明らかになった<ref name=ref1></ref>。


DTI
拡散テンソルイメージング(DTI)を用いることによって、盲視の患者では脳損傷によって投射経路の可塑的変化が起こっていることが示唆されている。たとえばLGNからMTへの結合がより強くなっている<ref><pubmed> 18469021 </pubmed></ref>。また、上丘から視床枕を経由して扁桃体へと入力する結合がより強くなっている<ref><pubmed> 22748315 </pubmed></ref>。また、半球皮質切除を受けた患者のうち盲視の能力を持つ患者では、通常では見られないような、切除側の上丘から反対側の大脳皮質へと投射する経路が同定されている<ref><pubmed> 16714319 </pubmed></ref>。


== 盲視の脳内メカニズム(1) 解剖学 ==
== 盲視の脳内メカニズム(1) 解剖学 ==


盲視にはどのような神経ネットワークが関わっているのだろうか? 視覚刺激に目を向ける急速眼球運動(サッカード)に関わっている経路としては、網膜から視床、第一次視覚野、そして第一次視覚野から頭頂葉にあるLIPや前頭葉にあるFEFを経由して、中脳にある上丘でサッカードの指令が生成され、脳幹を介して外転筋を働かせることによって眼球を回転させる、という経路が考えられてきた<ref><pubmed> 11301526 </pubmed></ref>。一方で、第一次視覚野を介さない回路もある。この回路によって網膜から上丘へ直接サッカードのための情報を伝達することが可能だ。盲視では、この進化的に古い経路によって、視覚意識を伴わない視覚情報処理が行われているのではないかと考えられてきた<ref name=ref4></ref>。
盲視で網膜からV1を経由せずに視覚情報を伝えるルートとしては、解剖学的には以下の可能性がある。


後述する盲視のモデル動物において、上丘を損傷させるまたは薬理的に抑制すると、視覚弁別能力が消失する<ref name=ref3></ref><ref><pubmed> 21645091 </pubmed></ref>。このことは盲視が網膜から上丘へと向かう皮質下の経路によって担われていることの強力な証拠となっている。ただし、視床の外側膝状体から第一次視覚野をバイパスしてMT野へと投射する経路が盲視に関わっているとする報告もある4)。盲視に関わる経路に関しては今後のさらなる解明が必要である。
* 網膜から上丘への入力が直接眼球運動などの行動を引き起こす<ref name=ref4></ref>
* 網膜から上丘への入力が視床枕を経由してextrastriate cortex に到達する<ref><pubmed> 5807867 </pubmed></ref><ref name=ref5><pubmed> 2329373 </pubmed></ref>。
* 網膜から外側膝状体(LGN)への入力が直接extrastriate cortexに到達する<ref><pubmed> 9343607 </pubmed></ref><ref><pubmed> 15378066 </pubmed></ref>。
 
LGNへの入力には網膜からの直接的な投射だけではなく間接的なものもある。LGNへの間接的な視覚入力としては、上丘のうち網膜から直接入力を受ける上丘浅層(SGS)からLGNへの投射があることが知られている。しかもこのような投射はヒト、マカクザルを含むほ乳類のさまざまな種で保存されている<ref><pubmed> 1707899 </pubmed></ref>。よって、LGNには、網膜からSGSを経由した情報が入力している可能性がある。
 
マカクザルでMT野にrabies virusを注入すると逆行性および多シナプス性に上丘が標識される<ref><pubmed> 20152132 </pubmed></ref>。このことは上丘からMT野までシナプス一つを介して入力していることを示している。上丘からMT野への間接的投射には、上丘2b層 -> 視床枕 -> MT野という経路と、上丘2b層 -> LGNのK層 -> MT野という経路の二つの可能性がある(上丘2a層、2b層はどちらも上丘浅層に属する)。はたして、ウイルスによって標識されたのは上丘2b層であった。このことは上丘からMT野への投射は視床枕を経由していることを示唆している。よって、上丘からLGNを経由してMT野へ情報が入るという可能性は解剖学の知見からは否定的である。


== 盲視の脳内メカニズム(2) 生理学 ==
== 盲視の脳内メカニズム(2) 生理学 ==


マカクザルを動物モデルとして用いた研究では、第一次視覚野の切除後の上丘からニューロン活動を記録したものがある。損傷した第一次視覚野と同側の上丘には、視覚刺激に応答するもの、サッカードの実行時に活動するものが見いだされた<ref name=ref2><pubmed> 21411664 </pubmed></ref>。つまり、第一次視覚野損傷の後も上丘は機能している。さらに記憶誘導性サッカード課題を用いて、盲視モデル動物が見えていない部分に提示された視覚刺激の位置を2秒間記憶しておくという条件で上丘のニューロン活動を記録した。盲視モデル動物はこの課題を90%以上の成績で行うことができた。このとき上丘は記憶をしている時間のあいだ持続的に活動していた。このことは第一次視覚野の損傷からの機能回復によって、上丘が普段は行っていない、空間的短期記憶の機能を担うようになったということを示唆している<ref  name=ref2></ref>。
V1損傷後のマカクザルのMTニューロンの視覚応答は、発火頻度は小さくなっているものの方向選択性はほぼ正常時と同じ程度に保持されていた<ref><pubmed> 2723765 </pubmed></ref>。一方で、V1と上丘とを両方損傷させた場合にはMTの応答は完全に消失した<ref name=ref5></ref>。このことはV1損傷後のMTニューロンの応答が上丘を経由するものであることを示唆しており、LGNから直接MTへ入力する経路によっては説明できない。
 
マカクザルを盲視の動物モデルとして用いた研究では、上丘を薬理学的に抑制すると、視覚弁別能力が消失する<ref name=ref3></ref><ref><pubmed> 21645091 </pubmed></ref>。この実験結果は盲視が上丘を経由する回路で処理されている可能性を示唆している。一方で、V1の部分的除去のあとでも、視覚刺激への応答がV2やMTで見られることがサルでのfMRIを用いた研究から報告されている<ref><pubmed> 20574422 </pubmed></ref>。この状況では、LGNを薬理学的に抑制すると盲視が消失する。この実験結果は盲視がLGNを経由する回路で処理されている可能性を示唆している。この二つの説のどちらが正しいかを実証するためには、同じ動物で上丘、LGNそれぞれを抑制する実験をする必要がある。
 
マカクザルを盲視の動物モデルとして用いた研究では、第一次視覚野の切除後の上丘からニューロン活動を記録したものがある。損傷した第一次視覚野と同側の上丘には、視覚刺激に応答するもの、サッカードの実行時に活動するものが見いだされた<ref name=ref2></ref>。つまり、第一次視覚野損傷の後も上丘は機能している。さらに、記憶誘導性サッカード課題遂行中の上丘のニューロン活動を記録したところ、上丘は短期空間記憶を保持している期間のあいだ持続的に活動していた。このことは第一次視覚野の損傷からの機能回復によって、上丘が普段は行っていない、空間的短期記憶の機能を担うようになったということを示唆している<ref  name=ref2></ref>。


== ほかの感覚でも盲視に対応したものはあるか? ==
== ほかの感覚でも盲視に対応したものはあるか? ==
27

回編集