「塩素チャネル」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
3行目: 3行目:
同義語: アニオンチャネル、クロライドチャネル、Cl<sup>−</sup>チャネル、塩素イオンチャネル   
同義語: アニオンチャネル、クロライドチャネル、Cl<sup>−</sup>チャネル、塩素イオンチャネル   


 塩素チャネルとは、[[細胞膜]]に組み込まれた[[イオンチャネル]]の一種で、主に[[wikipedia:ja:塩化物イオン|塩化物イオン]](Cl<sup>−</sup>)を受動的に透過させる。ほとんどの塩素チャネルは、Cl<sup>−</sup>以外の[[wikipedia:I-|I<sup>−</sup>]][[wikipedia:Br-|Br<sup>−</sup>]][[wikipedia:F-|F<sup>−</sup>]]等の無機陰イオン([[wikipedia:ja:アニオン|アニオン]])にも透過性を示し、また[[wikipedia:NO3-|NO<sub>3</sub><sup></sup>]][[wikipedia:SCN-|SCN<sup></sup>]][[wikipedia:HCO3-|HCO<sub>3</sub><sup>−</sup>]]や[[グルタミン酸]][[アスパラギン酸]]等のアミノ酸アニオンにも透過性を示すものも多いことから、一般にアニオンチャネルとも呼ばれる。細胞[[膜電位]]・細胞内[[カルシウム]]イオン濃度・細胞容積の変化や、リガンドの結合あるいは[[cAMP]]依存性の[[リン酸化]]反応に応答して開口する塩素チャネルがある。神経系において最もよく知られる塩素チャネルは、神経細胞の興奮・抑制調節に関与するリガンド作動性塩素チャネル([[GABAA受容体|GABA<sub>A</sub>受容体]]、[[GABAC受容体|GABA<sub>C</sub>受容体]]、[[グリシン受容体]])である。リガンド作動性以外の塩素チャネルについて、現在のところ特異的な[[阻害薬]]がほとんど無い。塩素チャネルは神経系を含むあらゆる種類の細胞に発現し、膜電位や細胞容積の調節、細胞の移動・増殖や[[細胞死]]([[アポトーシス]])、[[分泌]]などの細胞の基本機能に広く関与しており、チャネル異常による遺伝性疾患も数多く知られている。  
 塩素チャネルとは、[[細胞膜]]に組み込まれた[[イオンチャネル]]の一種で、主に[[wikipedia:ja:塩化物イオン|塩化物イオン]](Cl<sup>−</sup>)を受動的に透過させる。ほとんどの塩素チャネルは、Cl<sup>−</sup>以外の[[wikipedia:I-|I<sup>−</sup>]][[wikipedia:Br-|Br<sup>−</sup>]][[wikipedia:F-|F<sup>−</sup>]]等の無機陰イオン([[wikipedia:ja:アニオン|アニオン]])にも透過性を示し、また[[wikipedia:NO3-|NO<sub>3</sub><sup>-</sup>]][[wikipedia:SCN-|SCN<sup>-</sup>]][[wikipedia:HCO3-|HCO<sub>3</sub><sup>−</sup>]]や[[グルタミン酸]][[アスパラギン酸]]等のアミノ酸アニオンにも透過性を示すものも多いことから、一般にアニオンチャネルとも呼ばれる。細胞[[膜電位]]、細胞内[[カルシウム]]イオン濃度、細胞容積の変化や、リガンドの結合あるいは[[cAMP]]依存性の[[リン酸化]]反応に応答して開口する塩素チャネルがある。神経系において最もよく知られる塩素チャネルは、神経細胞の興奮、抑制調節に関与するリガンド作動性塩素チャネル([[GABAA受容体|GABA<sub>A</sub>受容体]]、[[GABAC受容体|GABA<sub>C</sub>受容体]]、[[グリシン受容体]])である。リガンド作動性以外の塩素チャネルについて、現在のところ特異的な[[阻害薬]]がほとんど無い。塩素チャネルは神経系を含むあらゆる種類の細胞に発現し、膜電位や細胞容積の調節、細胞の移動、増殖や[[細胞死]]([[アポトーシス]])、[[分泌]]などの細胞の基本機能に広く関与しており、チャネル異常による遺伝性疾患も数多く知られている。  


== 種類  ==
== 種類  ==
73行目: 73行目:
== ClC塩素チャネル  ==
== ClC塩素チャネル  ==


 塩素チャネルとして最初に[[wikipedia:ja:シビレエイ|シビレエイ]](学名 [[wikipedia:Torpedo marmorata|''Torpedo marmorata'']])の[[wikipedia:ja:発電器官|発電器官]]からクローニングされた遺伝子ファミリーに属するものである<ref name="ref1"><pubmed>18307107</pubmed></ref>。[[wikipedia:ja:哺乳類|哺乳類]]では9種類知られており、そのうち神経系に発現が知られているのは主にClC-2・-3・-4・-6・-7である。ClC-2は主に形質膜に分布して電位感受性塩素チャネルとして機能し、その他のClC-3・-4・-6・-7は主に細胞内小胞膜に分布し、チャネルというよりは、むしろ[[Cl-/H+-交換輸送体|Cl<sup>-</sup>/H<sup>+</sup>-交換輸送体]]として機能すると考えられている。  
 塩素チャネルとして最初に[[wikipedia:ja:シビレエイ|シビレエイ]](学名 [[wikipedia:Torpedo marmorata|''Torpedo marmorata'']])の[[wikipedia:ja:発電器官|発電器官]]からクローニングされた遺伝子ファミリーに属するものである<ref name="ref1"><pubmed>18307107</pubmed></ref>。[[wikipedia:ja:哺乳類|哺乳類]]では9種類知られており、そのうち神経系に発現が知られているのは主にClC-2、-3、-4、-6、-7である。ClC-2は主に形質膜に分布して電位感受性塩素チャネルとして機能し、その他のClC-3、-4、-6、-7は主に細胞内小胞膜に分布し、チャネルというよりは、むしろ[[Cl-/H+-交換輸送体|Cl<sup>-</sup>/H<sup>+</sup>-交換輸送体]]として機能すると考えられている。  


=== 構造  ===
=== 構造  ===
83行目: 83行目:
 [[wikipedia:ja:バクテリア|バクテリア]]のClCタンパク質については既に[[wikipedia:ja:X線結晶構造解析|X線結晶構造解析]]が進んでおり、各サブユニットが17の膜内へリックス構造(うち8つは膜を貫通せず途中で折り返す)を含む18のセグメントで構成された複雑なトポロジーが明らかになった(図1)。チャネル阻害剤の結合部位の解析やシステイン変異導入の解析から、この構造は全ての種のClCタンパク質で凡そ共通のものと考えられている。
 [[wikipedia:ja:バクテリア|バクテリア]]のClCタンパク質については既に[[wikipedia:ja:X線結晶構造解析|X線結晶構造解析]]が進んでおり、各サブユニットが17の膜内へリックス構造(うち8つは膜を貫通せず途中で折り返す)を含む18のセグメントで構成された複雑なトポロジーが明らかになった(図1)。チャネル阻害剤の結合部位の解析やシステイン変異導入の解析から、この構造は全ての種のClCタンパク質で凡そ共通のものと考えられている。


 チャネルとCl-/H+-交換輸送の機能の違いは、細胞質側の或る1つのグルタミン酸残基の有無に起因しており、構造上の大差は無いことが判明している。なお、[[wikipedia:ja:真核生物|真核生物]]のClCタンパク質のC末端には、サブユニット間の相互作用やチャネルの活性に影響を与えうる2つのcystathionine-β-synthase (CBS) ドメインが存在する。  
 チャネルとCl<sup>-</sup>/H<sup>+</sup>-交換輸送の機能の違いは、細胞質側の或る1つのグルタミン酸残基の有無に起因しており、構造上の大差は無いことが判明している。なお、[[wikipedia:ja:真核生物|真核生物]]のClCタンパク質のC末端には、サブユニット間の相互作用やチャネルの活性に影響を与えうる2つのcystathionine-β-synthase (CBS) ドメインが存在する。  


=== 発現  ===
=== 発現  ===


 ClC-2は神経系では広く神経・[[グリア]]ともに、また胎生期・生後ともに、その発現が認められる。ClC-3・-4・-6・-7も神経系に広く発現しているが、そのほとんどが細胞内小胞膜上([[エンドソーム]][[リソソーム]]等)に分布している。
 ClC-2は神経系では広く神経、[[グリア]]ともに、また胎生期、生後ともに、その発現が認められる。ClC-3・-4・-6・-7も神経系に広く発現しているが、そのほとんどが細胞内小胞膜上([[エンドソーム]][[リソソーム]]等)に分布している。


=== 機能  ===
=== 機能  ===
99行目: 99行目:
==== ClC-3・-4・-6・-7 ====
==== ClC-3・-4・-6・-7 ====


 ClC-4についてはCl−/H+交換輸送の機能を有することが発現系にて確認されている。その他のClC-3・-6・-7については未だ交換輸送の機能は確定していないが、いずれも主に細胞内小胞膜上に分布していること、そして結晶構造の解かれているバクテリアのClCタンパク質がCl−/H+交換輸送体であり、その機能に特徴的なアミノ酸配列をClC-3・-4・-6・-7のいずれもが共通に持つことから、いずれもCl−/H+交換輸送の機能を有すると考えられている。交換輸送の割合はCl−&nbsp;: H+ = 2&nbsp;: 1と考えられ、小胞内の酸性化促進(小胞性[[H+ポンプ|H<sup>+</sup>ポンプ]]の駆動により生ずる電荷移動のCl−による中和を通じて)に寄与すると考えられている。
 ClC-4についてはCl<sup>-</sup>/H<sup>+</sup>交換輸送の機能を有することが発現系にて確認されている。その他のClC-3・-6・-7については未だ交換輸送の機能は確定していないが、いずれも主に細胞内小胞膜上に分布していること、そして結晶構造の解かれているバクテリアのClCタンパク質がCl<sup>-</sup>/H<sup>+</sup>交換輸送体であり、その機能に特徴的なアミノ酸配列をClC-3・-4・-6・-7のいずれもが共通に持つことから、いずれもCl<sup>-</sup>/H<sup>+</sup>交換輸送の機能を有すると考えられている。交換輸送の割合はCl<sup>-</sup>:H<sup>+</sup> = 2:1と考えられ、小胞内の酸性化促進(小胞性[[H+ポンプ|H<sup>+</sup>ポンプ]]の駆動により生ずる電荷移動のCl<sup>-</sup>による中和を通じて)に寄与すると考えられている。


 ClC-3と-4については、過剰発現により一部細胞膜に発現した際の電流が観測されており、急峻な外向き整流性(高い脱分極でのみ活性化)が確認されている。
 ClC-3と-4については、過剰発現により一部細胞膜に発現した際の電流が観測されており、急峻な外向き整流性(高い脱分極でのみ活性化)が確認されている。


 ClC-3 KOマウスでは[[網膜]]と[[海馬]]の変性・脱失、ClC-7 KOマウスでも網膜変性やリソソーム蓄積による神経変性が認められることが報告されているが、それぞれのClCの機能との連関は明らかになっていない。  
 ClC-3 KOマウスでは[[網膜]]と[[海馬]]の変性、脱失、ClC-7 KOマウスでも網膜変性やリソソーム蓄積による神経変性が認められることが報告されているが、それぞれのClCの機能との連関は明らかになっていない。  


== カルシウム依存性塩素チャネル  ==
== カルシウム依存性塩素チャネル  ==
113行目: 113行目:
==== Anoctamin/TMEM16ファミリー  ====
==== Anoctamin/TMEM16ファミリー  ====


 Ano1/TMEM16Aについては、近年二量体を形成していることが示され、アミノ酸疎水性度の解析から、各サブユニットは8回膜貫通領域を持ち、細胞質側に大きなN末端とC末端から成る構造物を持つことが示唆されている(図2)。ポア領域やCa<sup>2+</sup>結合部位及び[[電位センサー]]部位は未だ同定されていないが、他のCa<sup>2+</sup>依存性・電位依存性イオンチャネルでよく知られる構造との類似性は認められていない。
 Ano1/TMEM16Aについては、近年二量体を形成していることが示され、アミノ酸疎水性度の解析から、各サブユニットは8回膜貫通領域を持ち、細胞質側に大きなN末端とC末端から成る構造物を持つことが示唆されている(図2)。ポア領域やCa<sup>2+</sup>結合部位及び[[電位センサー]]部位は未だ同定されていないが、他のCa<sup>2+</sup>依存性、電位依存性イオンチャネルでよく知られる構造との類似性は認められていない。


==== Bestrophinファミリー  ====
==== Bestrophinファミリー  ====
120行目: 120行目:


=== 発現 ===
=== 発現 ===
 Ano1/TMEM16Aは神経系では主に[[末梢神経]]系([[後根神経節]]や[[交感神経節]]細胞)に強い発現が認められる。Ano2/TMEM16Bは特に網膜や[[嗅神経]]で多く、脳内では[[大脳皮質]][[中脳]][[脳幹]]部に或る程度の発現が報告されている。  
 Ano1/TMEM16Aは神経系では主に[[末梢神経]]系([[後根神経節]]や[[交感神経節]]細胞)に強い発現が認められる。Ano2/TMEM16Bは特に網膜や[[嗅神経]]で多く、脳内では[[大脳皮質]][[中脳]][[脳幹]]部に或る程度の発現が報告されている。  


 BestrophinファミリーのBest1は広く神経・グリア双方で発現が報告されており、Best2は特に嗅神経での発現が認められている。Best3・Best4は神経系でのタンパク質レベルでの発現は未だ確認されていないが、mRNAは脳内の神経・グリア双方で或る程度の発現が確認されている。
 BestrophinファミリーのBest1は広く神経、グリア双方で発現が報告されており、Best2は特に嗅神経での発現が認められている。Best3、Best4は神経系でのタンパク質レベルでの発現は未だ確認されていないが、mRNAは脳内の神経、グリア双方で或る程度の発現が確認されている。


=== 機能 ===
=== 機能 ===
132行目: 132行目:
 Best1については、近年[[アストログリア]]の主なCaCCであると報告されると同時に、同チャネルを通じてグルタミン酸や[[GABA]]がアストログリアから周囲に放出されることにより、シナプス機能や神経興奮性の調節が行われるとの報告がなされた<ref name="ref16"><pubmed>20929730</pubmed></ref><ref name="ref17"><pubmed>23021213</pubmed></ref>。Best2はかつて嗅神経でのCaCC候補の1つであったが、Best2 KOマウスとWTマウスでCaCCに大きな相違が認められず、後に嗅神経でのCaCCは上記のようにAno2/TMEM16Bによることが確定している。
 Best1については、近年[[アストログリア]]の主なCaCCであると報告されると同時に、同チャネルを通じてグルタミン酸や[[GABA]]がアストログリアから周囲に放出されることにより、シナプス機能や神経興奮性の調節が行われるとの報告がなされた<ref name="ref16"><pubmed>20929730</pubmed></ref><ref name="ref17"><pubmed>23021213</pubmed></ref>。Best2はかつて嗅神経でのCaCC候補の1つであったが、Best2 KOマウスとWTマウスでCaCCに大きな相違が認められず、後に嗅神経でのCaCCは上記のようにAno2/TMEM16Bによることが確定している。


 Best3・Best4の神経系での機能は未だ調べられていない。
 Best3、Best4の神経系での機能は未だ調べられていない。


 BestrophinチャネルはHCO<sub>3</sub><sup>–</sup>に対する透過性が高く、また[[L型電位依存性Ca2+チャネル|L型電位依存性Ca<sup>2+</sup>チャネル]]との相互作用を介してCa<sup>2+</sup>流入量も変化させうることから、細胞内Ca<sup>2+</sup>動態やpHの恒常性維持にも寄与している可能性が示唆されている<ref name="ref3" /><ref name="ref4" />。
 BestrophinチャネルはHCO<sub>3</sub><sup>–</sup>に対する透過性が高く、また[[L型電位依存性Ca2+チャネル|L型電位依存性Ca<sup>2+</sup>チャネル]]との相互作用を介してCa<sup>2+</sup>流入量も変化させうることから、細胞内Ca<sup>2+</sup>動態やpHの恒常性維持にも寄与している可能性が示唆されている<ref name="ref3" /><ref name="ref4" />。
140行目: 140行目:
 典型的には細胞容積の増大に伴い開口する塩素チャネルである。神経系の細胞を含む、あらゆる細胞種で容積増大により最も多く活性化されるのが、細胞容積感受性外向整流性アニオンチャネル(volume-sensitive outwardly rectifying anion channel; VSOR)と呼ばれるものであるが、その分子実体はまだ解明されていない<ref name="ref5"><pubmed>19171657</pubmed></ref>。
 典型的には細胞容積の増大に伴い開口する塩素チャネルである。神経系の細胞を含む、あらゆる細胞種で容積増大により最も多く活性化されるのが、細胞容積感受性外向整流性アニオンチャネル(volume-sensitive outwardly rectifying anion channel; VSOR)と呼ばれるものであるが、その分子実体はまだ解明されていない<ref name="ref5"><pubmed>19171657</pubmed></ref>。


 その他、マキシアニオンチャネル(maxi-anion channel)<ref name="ref6"><pubmed>19340557</pubmed></ref>と呼ばれるものや、上述のClC-2・Best1も容積感受性があることが知られている。
 その他、マキシアニオンチャネル(maxi-anion channel)<ref name="ref6"><pubmed>19340557</pubmed></ref>と呼ばれるものや、上述のClC-2、Best1も容積感受性があることが知られている。


=== 構造 ===
=== 構造 ===
148行目: 148行目:
=== 発現 ===
=== 発現 ===


 責任分子が未同定であるVSORやマキシアニオンチャネルについて、その発現をmRNAやタンパク質の検出により確認することは現時点では不能だが、機能的には細胞に低浸透圧負荷を与えて膨張させることにより、少なくともVSORについては、その活性は神経・グリア双方で確実に観測される<ref name="ref5" />。マキシアニオンチャネルについても、神経・グリア双方でその活性は報告されているが、低浸透圧負荷の場合はVSOR活性の方が圧倒的に優勢なため、明瞭な観測には予めVSOR活性化を阻害剤で抑制しておく必要がある<ref name="ref6" />。  
 責任分子が未同定であるVSORやマキシアニオンチャネルについて、その発現をmRNAやタンパク質の検出により確認することは現時点では不能だが、機能的には細胞に低浸透圧負荷を与えて膨張させることにより、少なくともVSORについては、その活性は神経、グリア双方で確実に観測される<ref name="ref5" />。マキシアニオンチャネルについても、神経、グリア双方でその活性は報告されているが、低浸透圧負荷の場合はVSOR活性の方が圧倒的に優勢なため、明瞭な観測には予めVSOR活性化を阻害剤で抑制しておく必要がある<ref name="ref6" />。  


=== 機能 ===
=== 機能 ===