「セルアセンブリ」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
13行目: 13行目:
== Hebbのセルアセンブリ ==
== Hebbのセルアセンブリ ==


 Hebbが1949年に発表した著作”Organization of Behavior”<ref name=ref1 />は「引用されはするが読まれることのない幻の名著」(行動の機構、鹿取他訳、下巻 p.265)として知られる。サイバネティクスが黎明し、機械・コンピュータと生物をシステムとして統一的に研究対象とする機運の高まり、McCulloch & Pittsによる神経細胞ネットワークによる論理回路実現の理論的可能性の提唱などの時代背景において書かれたこの著作には、神秘主義に陥りがちであった心理学的議論をいかに論理的・合理的に構成するかに対して熟考された内容が展開されている。現在の脳科学の知識を持った我々が読み返すと、「ヘッブシナプス」や「ヘッブのセルアセンブリ」といったHebbの名を冠して引用されることのある、古典として知られる概念だけではなく、活動が時間的相関で関係付けられる細胞集団の動的振る舞いを基本として情報表現、情報処理を議論する最近の研究概念がすでに記述されているように読み取れる。これは、決して読者の欲目だけではないように思われる。Hebbの著作からキー概念と思われる文章を抜き出して、再検討を試みることは、セルアセンブリの基本概念の理解に役立つと考えるため、少々長くなるがここにまとめる。尚、以下の文中で[ ]で囲まれた部分は本概説の執筆者の補足である。
 Hebbが1949年に発表した著作”Organization of Behavior”<ref name=ref1 />は「引用されはするが読まれることのない幻の名著」(行動の機構、鹿取他訳、下巻 p.265)<ref name=ref2>'''D.O.ヘッブ'''<br>行動の機構 脳メカニズムから心理学へ<br>鹿取廣人、金城辰夫、鈴木光太郎、鳥居修晃、渡邊正孝共訳<br>''岩波文庫'' 2011<br>(有名なヘッブシナプス、ヘッブのセルアセンブリの概念は4章と5章に展開されている。)</ref>として知られる。サイバネティクスが黎明し、機械・コンピュータと生物をシステムとして統一的に研究対象とする機運の高まり、McCulloch & Pittsによる神経細胞ネットワークによる論理回路実現の理論的可能性の提唱などの時代背景において書かれたこの著作には、神秘主義に陥りがちであった心理学的議論をいかに論理的・合理的に構成するかに対して熟考された内容が展開されている。現在の脳科学の知識を持った我々が読み返すと、「ヘッブシナプス」や「ヘッブのセルアセンブリ」といったHebbの名を冠して引用されることのある、古典として知られる概念だけではなく、活動が時間的相関で関係付けられる細胞集団の動的振る舞いを基本として情報表現、情報処理を議論する最近の研究概念がすでに記述されているように読み取れる。これは、決して読者の欲目だけではないように思われる。Hebbの著作からキー概念と思われる文章を抜き出して、再検討を試みることは、セルアセンブリの基本概念の理解に役立つと考えるため、少々長くなるがここにまとめる。尚、以下の文中で[ ]で囲まれた部分は本概説の執筆者の補足である。


 なんらかの構造的な変化とは独立した、完全な神経活動のパターンの作用としての[[記憶痕跡]]というものが、存在すると考えてよいだろう。・・・そのような痕跡は、きわめて不安定なものだということを指摘している。(同上巻 p.166)
 なんらかの構造的な変化とは独立した、完全な神経活動のパターンの作用としての[[記憶痕跡]]というものが、存在すると考えてよいだろう。・・・そのような痕跡は、きわめて不安定なものだということを指摘している。(同上巻 p.166)
[外部入力に対して一時的に誘発される複数細胞の活動パターンを情報処理(ここでは記憶が固定化されるまでの痕跡)として考えている]
[外部入力に対して一時的に誘発される複数細胞の活動パターンを情報処理(ここでは記憶が固定化されるまでの痕跡)として考えている]


 ・・・多重連鎖による局所的で集中的な発火活動bombardmentは、F [シナプス後細胞] が発火するのを助けるだろう。また、1[[7野]]の2つの線維から興奮を同時に受けとるような細胞があれば、その細胞は、ひとつの線維だけからの興奮を受けとるよりも発火しやすくなるだろう。(同p.177)
 ・・・多重連鎖による局所的で集中的な発火活動bombardmentは、F [シナプス後細胞] が発火するのを助けるだろう。また、1[[7野]]の2つの線維から興奮を同時に受けとるような細胞があれば、その細胞は、ひとつの線維だけからの興奮を受けとるよりも発火しやすくなるだろう。(同p.177)
[スパイク発火タイミングという短い時間スケールではないが、同時入力がシナプス後細胞の発火効率を上昇させるという実験事実に着目し、複数の細胞活動の相関の連鎖が重要であることを考えている]
[スパイク発火タイミングという短い時間スケールではないが、同時入力がシナプス後細胞の発火効率を上昇させるという実験事実に着目し、複数の細胞活動の相関の連鎖が重要であることを考えている]


 17野における特定領域が活動すると、そことは別の17野の領域が活動しても発火する傾向にない[[18野]]の特定の細胞を、興奮しやすくするということもあるかもしれない。(同p.178)
 17野における特定領域が活動すると、そことは別の17野の領域が活動しても発火する傾向にない[[18野]]の特定の細胞を、興奮しやすくするということもあるかもしれない。(同p.178)
[下位の領野の複数細胞の活動パターンという文脈性により、上位の領野の反応特性が変化するという動的なゲインコントロールを予言している]
[下位の領野の複数細胞の活動パターンという文脈性により、上位の領野の反応特性が変化するという動的なゲインコントロールを予言している]


 したがって17野以降の部位で、2つの異なった視覚刺激によって活性化している組織は、(1)大まかには同一だが、(2)組織学的には別個のもの、ということになるはずである。刺激パターンの違いは、知覚を媒介している脳の部位に大きな差を生じさせることにはならないであろう。・・・と同時に、刺激作用の部位またはパターンの違いは、これら領野において、一貫した発火活動ないしは最大の発火活動を起こす特定の細胞群が、異なっているということを意味すると考えられる。(同 p.178-179)
 したがって17野以降の部位で、2つの異なった視覚刺激によって活性化している組織は、(1)大まかには同一だが、(2)組織学的には別個のもの、ということになるはずである。刺激パターンの違いは、知覚を媒介している脳の部位に大きな差を生じさせることにはならないであろう。・・・と同時に、刺激作用の部位またはパターンの違いは、これら領野において、一貫した発火活動ないしは最大の発火活動を起こす特定の細胞群が、異なっているということを意味すると考えられる。(同 p.178-179)
[外部刺激の物理特徴と比較的明確な対応が見られる17野の細胞とは異なり、高次領野の細胞は脳内においてのみ区別されうる抽象的な情報表現になっている可能性を議論している。また、明らかに分散表現のパラダイムを前提としている]
[外部刺激の物理特徴と比較的明確な対応が見られる17野の細胞とは異なり、高次領野の細胞は脳内においてのみ区別されうる抽象的な情報表現になっている可能性を議論している。また、明らかに分散表現のパラダイムを前提としている]


 解剖学的にはこのように機構化の欠けた細胞群の中に、活動の統合の基礎となるようなものを見出すことができるだろうか?(同 p.179)
 解剖学的にはこのように機構化の欠けた細胞群の中に、活動の統合の基礎となるようなものを見出すことができるだろうか?(同 p.179)
[高次領野において特定の情報を表現するセルアセンブリがどのようにして発現されうるかという問題に対して、Hebbは現在においても十分な説得力を持ちうる合理的な機構を以下の文章で提案している]
[高次領野において特定の情報を表現するセルアセンブリがどのようにして発現されうるかという問題に対して、Hebbは現在においても十分な説得力を持ちうる合理的な機構を以下の文章で提案している]


 私の提出した知覚的統合の仮説にとってもっとも必要とされる巧妙な連絡が、そもそも初めから遺伝的に整えられたとする主張は、ありえないように思えるかもしれない。言うまでもなく、それは確率の問題だというのが私の答えである。・・・ランダムに分布する連絡線維が十分大量に含まれている集団があるとすれば、起こりそうもない連絡も、絶対数の上ではかなりの高頻度で起こるはずだ。・・・次の2種類の同時生起が頻繁に生じる必要がある。すなわち(1)収斂する2つ以上の軸策間で同期して [synchronizationと表現している] 発火活動が生じること、そして(2)神経線維はわれわれが知るかぎりではランダムに分布しているが、それらの神経線維の間には収斂が存在するという解剖学的事実である。(同 p.188-189)
 私の提出した知覚的統合の仮説にとってもっとも必要とされる巧妙な連絡が、そもそも初めから遺伝的に整えられたとする主張は、ありえないように思えるかもしれない。言うまでもなく、それは確率の問題だというのが私の答えである。・・・ランダムに分布する連絡線維が十分大量に含まれている集団があるとすれば、起こりそうもない連絡も、絶対数の上ではかなりの高頻度で起こるはずだ。・・・次の2種類の同時生起が頻繁に生じる必要がある。すなわち(1)収斂する2つ以上の軸策間で同期して [synchronizationと表現している] 発火活動が生じること、そして(2)神経線維はわれわれが知るかぎりではランダムに分布しているが、それらの神経線維の間には収斂が存在するという解剖学的事実である。(同 p.188-189)


 それぞれのシナプスでは、インパルスの到達時間にかなりのバラツキがあるに違いないし、またそれぞれ個々の線維には応答の仕方に関して一定の変動があるに違いない。(同 p.191)
それぞれのシナプスでは、インパルスの到達時間にかなりのバラツキがあるに違いないし、またそれぞれ個々の線維には応答の仕方に関して一定の変動があるに違いない。(同 p.191)
 
ここで仮説として提起されている統合は、シナプス小頭部の成長と、上行性線維が後続する線維を抑制する確率の増加とに依存している。・・・はじめほかの単位と同期することが可能だったいくつかの単位は、もはや同期できなくなって、脱落することになると思われる。それが“分割”である。はじめは同調していなかったほかの単位が補充されることも考えられる。こうして、知覚の発達にともない、集成体のゆっくりとした成長が生じる、と考えられる。(同 p.192)


 ここで仮説として提起されている統合は、シナプス小頭部の成長と、上行性線維が後続する線維を抑制する確率の増加とに依存している。・・・はじめほかの単位と同期することが可能だったいくつかの単位は、もはや同期できなくなって、脱落することになると思われる。それが“分割”である。はじめは同調していなかったほかの単位が補充されることも考えられる。こうして、知覚の発達にともない、集成体のゆっくりとした成長が生じる、と考えられる。(同 p.192)
[Hebbにとっては、ヘッブシナプスはセルアセンブリの実現にとって不可欠であったことが分かる。初期の機能的構造の無いネットワークにおいて、統計的・物理的に選択されたセルアセンブリが繰り返し入力により、選択と固定化が自己組織化されていくという発想は、ダーウィンの自然淘汰による進化の発想が根底にあるように思われる。上の文章において、近年発見されたspike time dependent plasticity (STDP) をヘッブシナプスに置き換えれば、発火タイミングにより同期するセルアセンブリへと拡張される。この場合には、集成体の成長は心理学的時間である数百ミリ秒というスケールで生じる可能性がある]
[Hebbにとっては、ヘッブシナプスはセルアセンブリの実現にとって不可欠であったことが分かる。初期の機能的構造の無いネットワークにおいて、統計的・物理的に選択されたセルアセンブリが繰り返し入力により、選択と固定化が自己組織化されていくという発想は、ダーウィンの自然淘汰による進化の発想が根底にあるように思われる。上の文章において、近年発見されたspike time dependent plasticity (STDP) をヘッブシナプスに置き換えれば、発火タイミングにより同期するセルアセンブリへと拡張される。この場合には、集成体の成長は心理学的時間である数百ミリ秒というスケールで生じる可能性がある]


40行目: 46行目:


 単純な知覚がこれほど込み入ったものだということは、理論構成上重要な意義を持っている。単純なパターンの知覚が、外界の事象によって終結される単一の持続状態ではなく、状態または過程の連鎖だと考える理由を、少しの間思い出してみよう。(同 p.231)
 単純な知覚がこれほど込み入ったものだということは、理論構成上重要な意義を持っている。単純なパターンの知覚が、外界の事象によって終結される単一の持続状態ではなく、状態または過程の連鎖だと考える理由を、少しの間思い出してみよう。(同 p.231)
もし、ひとつの観念またはひとつの知覚の持続時間が、閉鎖システム内の反響性活動の持続時間だとするなら、活動のパターンが1秒もの間変化しないまま持続することはほとんどないと言ってよい。知覚の安定性は、脳の活動が単一の持続するパターンの状態の時に生じるのではなくて、短い間隔で不規則な周期の位相が繰り返されるような状態の時に生じるのだ。(同 p.233)
もし、ひとつの観念またはひとつの知覚の持続時間が、閉鎖システム内の反響性活動の持続時間だとするなら、活動のパターンが1秒もの間変化しないまま持続することはほとんどないと言ってよい。知覚の安定性は、脳の活動が単一の持続するパターンの状態の時に生じるのではなくて、短い間隔で不規則な周期の位相が繰り返されるような状態の時に生じるのだ。(同 p.233)
[知覚はフィードフォワードの連鎖によるドミノ倒しの結果生じる定常的な脳活動ではなく、力学的な動的状態であることを議論している。これは脳での情報処理は、外界から入力した刺激の時間変動とは独立した、脳内での固有の時間スケールでのセルアセンブリの力学的な挙動により生じるという近年の仮説を予見している]
[知覚はフィードフォワードの連鎖によるドミノ倒しの結果生じる定常的な脳活動ではなく、力学的な動的状態であることを議論している。これは脳での情報処理は、外界から入力した刺激の時間変動とは独立した、脳内での固有の時間スケールでのセルアセンブリの力学的な挙動により生じるという近年の仮説を予見している]


== Hebbのセルアセンブリによる心的過程の説明 ==
== Hebbのセルアセンブリによる心的過程の説明 ==


 Hebbは著作”Textbook of Psychology”(行動学入門、白井常他訳)においてセルアセンブリの概念の発展として、様々な心理過程の説明を試みている。この議論からは、Hebbが媒介過程(mediating process)という心理過程の説明としてセルアセンブリを着想したことが推察される。
 Hebbは著作”Textbook of Psychology”<ref name=ref3>'''D.O.ヘッブ'''<br>行動学入門 第三版<br>白井常、鹿取廣人、平野俊二、金城辰夫、今村護郎共訳<br>''紀伊國屋書店'' 1975<br>(「媒介過程」に関しては、第5章で説明されている。)</ref>においてセルアセンブリの概念の発展として、様々な心理過程の説明を試みている。この議論からは、Hebbが媒介過程(mediating process)という心理過程の説明としてセルアセンブリを着想したことが推察される。
媒介過程とは、感覚事象によって送られた興奮を、その事象が終わったのちにも保持することができ、それで、刺激がしばらくのちにまで効果をもつことを可能とする脳の活動である、と定義することができよう(行動学入門、白井常他訳、p.111)。
 
 媒介過程とは、感覚事象によって送られた興奮を、その事象が終わったのちにも保持することができ、それで、刺激がしばらくのちにまで効果をもつことを可能とする脳の活動である、と定義することができよう(<ref name=ref3 />、p.111)。


 下等な生物における刺激―反応とは異なり、高等生物においては刺激が与えられる前の情況(文脈性)により、同じ刺激に対しても異なる反応が生じる。Hebbはこの媒介過程により、行動の選択性(構えと注意)という心理過程が説明されると主張する。脳内における異なる文脈性の保持のために異なるセルアセンブリの存在を仮定し、刺激により誘発される神経活動とセルアセンブリとの相互作用により、異なる反応が生じると考察している。感覚事象が終了しているにも関わらず脳内において文脈性が保持される神経メカニズムとしては、セルアセンブリの形成する閉回路での神経活動の持続を仮定している。HebbはLorente de Nóにより提唱された反響回路(reverbration)を想定していると思われるが、「閉回路」にあたる神経活動ダイナミクスの実体は現在の神経科学において解明される必要がある。
 下等な生物における刺激―反応とは異なり、高等生物においては刺激が与えられる前の情況(文脈性)により、同じ刺激に対しても異なる反応が生じる。Hebbはこの媒介過程により、行動の選択性(構えと注意)という心理過程が説明されると主張する。脳内における異なる文脈性の保持のために異なるセルアセンブリの存在を仮定し、刺激により誘発される神経活動とセルアセンブリとの相互作用により、異なる反応が生じると考察している。感覚事象が終了しているにも関わらず脳内において文脈性が保持される神経メカニズムとしては、セルアセンブリの形成する閉回路での神経活動の持続を仮定している。HebbはLorente de Nóにより提唱された反響回路(reverbration)を想定していると思われるが、「閉回路」にあたる神経活動ダイナミクスの実体は現在の神経科学において解明される必要がある。
70行目: 79行目:
== 参考文献 ==
== 参考文献 ==
<references />
<references />
  2. '''D.O.ヘッブ'''<br>    行動の機構 脳メカニズムから心理学へ<br>    鹿取廣人、金城辰夫、鈴木光太郎、鳥居修晃、渡邊正孝共訳<br>    ''岩波文庫'' 2011<br>    (有名なヘッブシナプス、ヘッブのセルアセンブリの概念は4章と5章に展開されている。)
  3. '''D.O.ヘッブ'''<br>    行動学入門 第三版<br>    白井常、鹿取廣人、平野俊二、金城辰夫、今村護郎共訳<br>    紀伊國屋書店 1975<br>    (「媒介過程」に関しては、第5章で説明されている。)


  4. '''Gerstein G.L., Bedenbaugh P., Aertsen AD M.H.J.'''<br>    Neuronal Assembiles<br>    ''IEEE Trans. Biomed.'' Eng. 36, 4-14, (1989).
  4. '''Gerstein G.L., Bedenbaugh P., Aertsen AD M.H.J.'''<br>    Neuronal Assembiles<br>    ''IEEE Trans. Biomed.'' Eng. 36, 4-14, (1989).