「サイクリン依存性タンパク質キナーゼ5」の版間の差分

提供:脳科学辞典
ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
(3人の利用者による、間の36版が非表示)
1行目: 1行目:
<div align="right"> 
英:cyclin-dependent kinase 英略語:Cdk
<font size="+1">[http://researchmap.jp/read0136206/?lang=japanese 大島 登志男]</font><br>
''早稲田大学先進理工学部生命医科学科 早稲田大学先端生命医科学センター''<br>
DOI:<selfdoi /> 原稿受付日:2013年5月20日 原稿完成日:2013年6月6日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所)
</div>


英:[[cyclin-dependent kinase]] 5 英略語:[[Cdk5]]
 サイクリン依存性キナーゼは細胞周期を制御するタンパク質キナーゼファミリーとして発見された<ref name=ref1><pubmed>9442875</pubmed></ref>。真核細胞に共通した機能として、進化的に保存されている構造を有し、活性化に必要なサイクリンが結合する部位であるサイクリン結合ドメインとキナーゼドメインからなる、分子量34-40 kDaの比較的小さなタンパク質である。サイクリンと結合することで活性型となるが、Cdkのリン酸化状態により活性が制御される。各細胞周期の進行において細胞はサイクリン及びCdkの組み合わせを変えて使い分けており、サイクリンE/Cdk2はG1/S期に働き、G1期になるとサイクリンEの発現量が増加して細胞周期の進行に関与し、S期になるとユビキチン-プロテアソーム系により分解される。サイクリンBはCdk1と結合してM期の開始を制御し、M期からG1期に移行するためには、ユビキチンシステムによるサイクリンBの分解が不可欠である。このように細胞周期に依存してサイクリの発現量が変化するが、Cdkの発現量は変化しない。Cdk5はサイクリンD,Eと結合するが活性化されず、最終分裂を終えた神経細胞に発現しているp35(CdkR1)またはp39(Cdk5R2)と結合することで活性型となる<ref name=ref2><pubmed></pubmed></ref>。Cdk5は神経細胞以外の細胞にも発現しているが、神経細胞で高いレベルの発現がある。サイクリン依存性キナーゼはプロリン指向性セリン・スレオニンキナーゼで基質のリン酸化部位は[S/T]PX[K/R]のコンセンサスモチーフを持つ(S/Tはリン酸化されるセリン・スレオニン、 Pはプロリン、Xは不特定のアミノ酸、KはリジンRはアルギニン)。Cdk5は様々な神経細胞特異的な数多くのタンパク質がリン酸化基質として同定されており、それぞれリン酸化による機能制御が報告されている(表1)。活性化サブユニットp35 タンパク質は、Cdk5とヘテロダイマー形成後リン酸化され、プロテアソーム系で分解される事により、量的に調整されている<ref name=ref3><pubmed></pubmed></ref>。神経細胞の障害などによる細胞内へのCaイオンの流入により活性化したカルパインによりp25に限定分解される<ref name=ref4><pubmed></pubmed></ref>。p25はCdk5への結合と活性化に必要なドメインを含んでいる。しかし、リン酸化によりプロテアソーム系への分解へとは進まずCdk5/p25は安定した活性型のキナーゼとなる。さらにp35はN末端のミリストリル化により細胞膜にアンカーしているのに対し、N末を欠くp25は細胞膜にアンカリングせず、細胞質さらには核へ局在を変え、結果的に細胞質や核でのCdk5活性の上昇を来たす。アルツハイマー病患者脳でのp25の増加とCdk5活性の上昇が報告され、p25産生がタウタンパク質の過剰リン酸化と神経細胞死をもたらすという説が提唱されている<ref name=ref4 />。しかし、アルツハイマー病では逆にp25量は低下しており、Cdk5活性も必ずしも上昇していないとの反論もある。その他パーキンソン病<ref name=ref5><pubmed></pubmed></ref>やハンチントン病<ref name=ref6><pubmed></pubmed></ref>などの神経変性疾患の病態に関与している可能性が示唆されている。これら病態でもパーキンやハッチンチンがCdk5の基質であり、Cdk5活性の上昇によりリン酸化型が増加することが病態と関連づけられるが、Cdk5が神経細胞死に対して保護的に働き、Cdk5活性が低下する細胞死を引き起こしやすくなるという報告がある<ref name=ref7><pubmed></pubmed></ref>。このように、Cdk5活性は神経細胞の生存において厳格に制御される必要があるが、神経機能においても同様であり、結合により活性を示さないサイクリンEとの結合もその活性制御に必要であることが示された<ref name=ref8><pubmed></pubmed></ref>。すなわち、サイクリンE量の低下はCdk5活性の上昇を来し、シナプス数やシナプス可塑性に影響を与えることが示された。また、Cdk5はキナーゼとしての機能以外に、グルタミン酸受容体のNR2Bとタンパク質分解酵素カルパインと複合体を形成し、カルパインによるNR2Bの分解を調整しており、Cdk5のタンパク質量の低下はNR2Bのポストシナプスでの量的増加を来す<ref name=ref9><pubmed></pubmed></ref>。さらに近年、神経細胞以外の細胞での機能が推定されている。オリゴデンドロサイトの分化での機能やCdk5によるPPARγのリン酸化がインスリン抵抗性の発生機序にかかわっている可能性が示唆されている<ref name=ref10><pubmed></pubmed></ref>。


{{box
表1.Cdk5の主な基質
|text=
 サイクリン依存性タンパク質キナーゼ5(Cdk5)は[[サイクリン依存性タンパク質キナーゼ]](Cdk)ファミリータンパク質の1つであり、触媒サブユニットとして活性化サブユニットとヘテロダイマーを形成することにより、活性型の[[セリン・スレオニンキナーゼ]]となる。他のCdkが[[細胞増殖]]の制御に関連し、増殖細胞の[[細胞周期]]依存的に活性が変化するのに対し、Cdk5は最終分裂を終え[[神経細胞]]が分化することで高い活性を示す。これは活性化サブユニット[[p35]]([[Cdk5R1]])と[[p39]]([[Cdk5R2]])の神経細胞特異的な発現に依存している。Cdk5の発現はユビキタスであるが、神経細胞に高いことが知られている。[[遺伝子欠損マウス]]の解析などから、生理的機能としては[[神経細胞移動]]や突起伸長などの神経発達に重要な役割を有することが報告されている。さらに、成体脳でも[[神経伝達物質]]の放出、[[シナプス可塑性]]や[[記憶]]・[[学習]]などに関与していることが知られている。またこれらの機能に関連した基質が多数報告されている(表1)。一方、Cdk5活性が上昇することが、[[アルツハイマー病]]や[[筋萎縮性側索硬化症]]、[[パーキンソン病]]や[[ハンチントン病]]などの[[神経変性疾患]]における[[神経細胞死]]と関連していることが示唆されている。
}}


==サイクリン依存性タンパク質キナーゼ5とは==
== 参考文献 ==
{{PBB|geneid=1020}}


 サイクリン依存性タンパク質キナーゼ([[Cyclin-dependent kinase]], [[Cdk]])は[[細胞周期]]を制御するタンパク質キナーゼファミリーとして発見された<ref name=ref1><pubmed>9442875</pubmed></ref>。その中でサイクリン依存性キナーゼ5(Cdk5)は[[サイクリンD]]との結合と高いアミノ酸配列の相同性からCdk5の名前が付けられたが、その後神経細胞に発現しているp35(Cdk5R1)およびp39(Cdk5R2)とヘテロダイマーを形成して活性型のキナーゼとなること判明した。神経細胞特異的な機能が報告されているが、近年、非神経細胞での機能も報告されている。[[オリゴデンドロサイト]]の[[分化]]に必要であることは、Cdk5の[[コンディショナルノックアウト]]の表現型からも確認されている。
1. ↑ Morgan, David O. (1997) "Cyclin-Dependent Kinase: Engines, Clocks, and Microprocessors." Annual Review of Cell and Developmental Biology. 13:261-291.


==構造==
2. ↑ Cdk5 book
 他Cdkと同様に、N末側に活性化サブユニットとの結合に必要な[[wj:αヘリックス|α1ヘリックス]]があり、C末側はキナーゼドメインがある。その3次元的構造により、[[wj:ATP|ATP]]結合ポケットがあり、[[リン酸化]]により活性化に関連したTループがある。他のCdkではTループ内のThr160がリン酸化されると構造変化を起こすが、Cdk5ではSer159がそれに相当する。また、他のCdkではThr14とTyr15のリン酸化は活性を抑制するが、Cdk5のTyr15のリン酸化は活性を上昇させることが報告されている。


==ファミリー==
3. ↑ Patrick et al.(1998)  p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J Biol Chem. 273:24057-64.
 サイクリン依存性キナーゼファミリーに属する。
{| class="wikitable"
|+表1. サイクリン依存性キナーゼファミリー Wikipediaより<ref name = "Satyanarayana2009"><pubmed>19561645</pubmed></ref> 。
|-
! CDK !! Cyclin partner !! 機能 !! ノックアウトマウスでの表現型
|-
| [http://mouse.brain-map.org/experiment/show/74431284 Cdk1] || Cyclin B || [[M期]] || 胎生致死(~E2.5).
|-
| rowspan=2|[http://mouse.brain-map.org/gene/show/12351 Cdk2] || Cyclin E || G1/S遷移 ||rowspan=2|体重減少、[[神経前駆細胞]]の増殖異常。生存可能であるが、雄雌ともに不妊。
|-
| Cyclin A || [[S期]], [[G2期]]
|-
| [http://mouse.brain-map.org/gene/show/45522 Cdk3] || Cyclin C || [[G1期]] ? ||異常なし。生存可、生殖可。
|-
| [http://mouse.brain-map.org/gene/show/12352 Cdk4] || Cyclin D || G1期 || 体重減少、インスリン欠乏性糖尿病。生存可能であるが、雄雌ともに不妊。
|-
| [http://mouse.brain-map.org/gene/show/12353 Cdk5] || p35 || 転写 || 神経学的異常。出生直後に死亡。
|-
| [http://mouse.brain-map.org/gene/show/12356 Cdk6] || Cyclin D || G1期 ||
|-
| [http://mouse.brain-map.org/experiment/show/69012950 Cdk11] || Cyclin L || ? || [[細胞分裂]]異常。胎生致死 (E3.5)
|}
遺伝子名はAllen Brain Atlasヘリンクしている。


==発現==
4. ↑  Patrick et al. (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 402(6762):615-22.
 Cdk5は神経細胞以外の細胞にも発現しているが、神経細胞で高いレベルの発現がある。細胞質、軸索、樹状突起に主に存在し、一部核にも存在する。


==機能==
5. ↑Smith et al. (2003) Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A. 100:13650-5.
===活性調節===
 Cdk5は[[サイクリンD]]、[[サイクリンE|E]]と結合するが活性化されず、最終分裂を終えた神経細胞に発現しているp35(CdkR1)またはp39(Cdk5R2)と結合することで活性型となる<ref name=ref2>'''Ip, Nancy Y., Tsai, Li-Huei (Eds)'''<br>Cyclin Dependent Kinase 5 (Cdk5)<br>Springer, 2008</ref>。活性化サブユニットp35 タンパク質は、Cdk5とヘテロダイマー形成後リン酸化され、[[プロテアソーム]]系で分解される事により、量的に調整されている<ref name=ref3><pubmed>9727024</pubmed></ref>。神経細胞の障害などによる細胞内への[[カルシウム]]イオンの流入により活性化した[[カルパイン]]によりp25に限定分解される<ref name=ref4><pubmed>10604467</pubmed></ref>。p25はCdk5への結合と活性化に必要なドメインを含んでいる。しかし、リン酸化によりプロテアソーム系への分解へとは進まずCdk5/p25は安定した活性型のキナーゼとなる。さらにp35はN末端の[[ミリストリル化]]により[[細胞膜]]にアンカーしているのに対し、N末を欠くp25は細胞膜にアンカリングせず、[[細胞質]]さらには[[核]]へ局在を変え、結果的に細胞質や核でのCdk5活性の上昇を来たす。


===基質===
6. ↑Luo et al. (2005) Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases: implications for mutant huntingtin toxicity. J Cell Biol. 169:647-56.
 サイクリン依存性キナーゼは[[プロリン指向性セリン・スレオニンキナーゼ]]で基質のリン酸化部位は[S/T]PX[K/R]のコンセンサスモチーフを持つ(S/Tはリン酸化される[[wj:セリン|セリン]]・[[wj:スレオニン|スレオニン]]、 Pは[[wj:プロリン|プロリン]]、Xは不特定の[[wj:アミノ酸|アミノ酸]]、Kは[[wj:リジン|リジン]]、Rは[[wj:アルギニン|アルギニン]])。Cdk5は様々な神経細胞特異的な数多くのタンパク質がリン酸化基質として同定されており、それぞれリン酸化による機能制御が報告されている(表2)。
{| class="wikitable"
|+表2. Cdk5の主な基質
|-
| style="background-color:#d3d3d3; text-align:center" | Cdk5 基質
| style="background-color:#d3d3d3; text-align:center" | リン酸化部位
| style="background-color:#d3d3d3; text-align:center" | 文献
|-
| style="text-align:center" colspan="3" | '''Cdk5 活性化サブユニット'''
|-
| p35
| Ser8, Thr138
| <ref name=ref3 /><ref><pubmed> 17121855 </pubmed></ref>
|-
| p39
|
| <ref><pubmed> 7592934 </pubmed></ref>
|-
| style="text-align:center" colspan="3" | '''[[細胞骨格]]制御'''
|-
| [[アミロイド前駆タンパク質]]
| Thr 668
| <ref><pubmed> 12860412 </pubmed></ref><ref><pubmed> 11578751 </pubmed></ref>
|-
| [[Pak1]]
| T212
| <ref><pubmed> 9744280 </pubmed></ref><ref><pubmed> 11604394 </pubmed></ref>
|-
| [[Nudel]]
|
| <ref><pubmed> 11163260 </pubmed></ref><ref><pubmed> 11163259 </pubmed></ref>
|-
| [[Tau]]
| S202, T205, T212, T217, S235, S396, S404
| <ref name=ref4 />
|-
| [[ニューロフィラメント]]
| Lys-Ser-Pro repeats in the tail region on the NFs
| <ref><pubmed> 9537991 </pubmed></ref><ref><pubmed> 11248670 </pubmed></ref><ref><pubmed> 7553915 </pubmed></ref>
|-
| [[Cables]]
| Tyr 15
| <ref name=ref100><pubmed>11854007</pubmed></ref>
|-
| [[MAP1b]]
|
| <ref><pubmed> 9822744 </pubmed></ref><ref><pubmed>9044056</pubmed></ref>
|-
| [[WAVE1]]
|
| <ref><pubmed> 16862120 </pubmed></ref>
|-
| [[CRMP2]]
| S522
| <ref><pubmed> 18460467 </pubmed></ref><ref><pubmed> 15676027 </pubmed></ref>
|-
| style="text-align:center" colspan="3" | '''神経細胞死制御、シナプス伝達、シナプス可塑性、シグナル伝達'''
|-
| [[Rb]]
| S87, 249,780, T252, 373, 821, 826
| <ref><pubmed> 9038171 </pubmed></ref>
|-
| [[MEF2]]
|
| <ref><pubmed> 12691662 </pubmed></ref>
|-
| [[Bcl-2]]
|
| <ref name=ref7><pubmed>18463240</pubmed></ref>
|-
| [[β-カテニン]]
| Tyr 654
| <ref><pubmed> 11168528 </pubmed></ref>
|-
| [[Src]]
|
| <ref name=ref100 />
|-
| [[NMDA型グルタミン酸受容体]][[NR2A]]
| Ser 1232
|  <ref><pubmed> 11675505 </pubmed></ref>
|-
| [[TrkB]]
|
| <ref><pubmed> 17341134 </pubmed></ref>
|-
| [[STAT3]]
|
| <ref><pubmed> 15096606 </pubmed></ref>
|-
| P/Q型[[電位依存性カルシウムチャネル]]
| 細胞内ループドメインII, III
| <ref><pubmed> 11923424 </pubmed></ref>
|-
| [[DARPP32]]
| Thr75
| <ref><pubmed> 14673205 </pubmed></ref>
|-
| [[シナプシン1]]
| S551, S553
| <ref><pubmed> 8702879 </pubmed></ref>
|-
| [[Munc18]]
| T547, S158
| <ref><pubmed> 9478941 </pubmed></ref><ref><pubmed> 9933594 </pubmed></ref>
|-
| [[PSD-95]]
|
| <ref><pubmed> 14749431 </pubmed></ref>
|-
| [[Amphyphysin-1]]
| S272, 276, 285
| <ref><pubmed> 11113134 </pubmed></ref><ref><pubmed> 12855954 </pubmed></ref><ref><pubmed> 14623869 </pubmed></ref>
|-
| [[ErbB]]
|
| <ref><pubmed> 11276227 </pubmed></ref>
|-
| [[Ephexin-1]]
|
| <ref><pubmed> 17143272 </pubmed></ref>
|-
| [[α-キメリン]]
|
| <ref><pubmed> 15013773 </pubmed></ref>
|-
| [[MEK1]]
|
| <ref><pubmed> 11684694 </pubmed></ref>
|-
| [[Doublecortin]]
| S297
| <ref><pubmed> 14741103 </pubmed></ref>
|-
| [[JUNK3]]
|
| <ref><pubmed> 11823425 </pubmed></ref>
|-
| [[Presenilin 1]]
| T354
| <ref><pubmed> 12056836 </pubmed></ref>
|-
| [[PPARγ]]
| S723
| <ref name=ref10><pubmed>20651683</pubmed></ref>
|-
| style="text-align:center" colspan="3" | '''神経変性疾患関連'''
|-
| [[Parkin]]
| S131
| <ref><pubmed> 17327227 </pubmed></ref>
|-
| [[Prx2]]
| T89
| <ref><pubmed> 17610816 </pubmed></ref>
|-
| [[Huntingtin]]
| S434, S1181, S1201
| <ref name=ref6><pubmed>15911879</pubmed></ref><ref><pubmed> 17611284 </pubmed></ref>
|-
|}


==神経系での機能==
7. ↑Cheung et al. (2008) Cyclin-dependent kinase 5 supports neuronal survival through phosphorylation of Bcl-2. J Neurosci. 28:4872-7.


 脳発生・発達期に神経細胞の[[移動]]、突起伸長に関与し、活性低下は神経細胞の生存に対するぜい弱性を招く。神経伝達物質の放出やポストシナプス機能にも関与し、脳高次機能への関与が示唆されている。
8. ↑Odajima J. et al. (2011) Cyclin E constrains Cdk5 activity to regulate synaptic plasticity and memory formation. Dev Cell. 2011 Oct 18;21(4):655-68.


 また、Cdk5はキナーゼとしての機能以外に、[[NMDA型グルタミン酸受容体]]の[[NR2B]]とタンパク質分解酵素カルパインと複合体を形成し、カルパインによるNR2Bの分解を調整しており、Cdk5のタンパク質量の低下はNR2Bのポストシナプスでの量的増加を来す<ref name=ref9><pubmed>17529984</pubmed></ref>。さらに近年、神経細胞以外の細胞での機能が推定されている。オリゴデンドロサイトの分化における機能やCdk5によるPPARγのリン酸化が[[wj:インスリン|インスリン]]抵抗性の発生機序にかかわっている可能性が示唆されている<ref name=ref10 />。
9. ↑Hawasli AH. et al. (2007) Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat. Neurosci. 10, 880-886.


 Cdk5活性は神経細胞の生存において厳格に制御される必要があるが、神経機能においても同様であり、結合により活性を示さない[[サイクリンE]]との結合もその活性制御に必要であることが示された<ref name=ref8><pubmed>21944720</pubmed></ref>。すなわち、サイクリンE量の低下はCdk5活性の上昇を来し、シナプス数やシナプス可塑性に影響を与えることが示された。
10. ↑Choi, JH. et al. (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature, 466, 451–456.


==疾患との関わり==
===アルツハイマー病===
 [[アルツハイマー病]]患者脳でのp25の増加とCdk5活性の上昇が報告され、p25産生がタウタンパク質の過剰リン酸化と神経細胞死をもたらすという説が提唱されている<ref name=ref4 />。しかし、アルツハイマー病では逆にp25量は低下しており、Cdk5活性も必ずしも上昇していないとの反論もある。


===パーキンソン病、ハンチントン病===
(執筆者:大島登志男 担当編集委員:尾藤 晴彦)
 
 パーキンソン病<ref name=ref5><pubmed>14595022</pubmed></ref>やハンチントン病<ref name=ref6 />などの神経変性疾患の病態に関与している可能性が示唆されている。これら病態でもパーキンやハンチンチンがCdk5の基質であり、Cdk5活性の上昇によりリン酸化型が増加することが病態と関連づけられるが、Cdk5が神経細胞死に対して保護的に働き、Cdk5活性が低下する細胞死を引き起こしやすくなるという報告がある<ref name=ref7 />。
 
==関連項目==
*[[神経細胞移動]]
*[[皮質形成]]
*[[神経伝達物質放出]]
*[[シナプス可塑性]]
*[[アルツハイマ―病]]
 
== 参考文献 ==
<references />

2013年5月20日 (月) 10:03時点における版

英:cyclin-dependent kinase 英略語:Cdk

 サイクリン依存性キナーゼは細胞周期を制御するタンパク質キナーゼファミリーとして発見された[1]。真核細胞に共通した機能として、進化的に保存されている構造を有し、活性化に必要なサイクリンが結合する部位であるサイクリン結合ドメインとキナーゼドメインからなる、分子量34-40 kDaの比較的小さなタンパク質である。サイクリンと結合することで活性型となるが、Cdkのリン酸化状態により活性が制御される。各細胞周期の進行において細胞はサイクリン及びCdkの組み合わせを変えて使い分けており、サイクリンE/Cdk2はG1/S期に働き、G1期になるとサイクリンEの発現量が増加して細胞周期の進行に関与し、S期になるとユビキチン-プロテアソーム系により分解される。サイクリンBはCdk1と結合してM期の開始を制御し、M期からG1期に移行するためには、ユビキチンシステムによるサイクリンBの分解が不可欠である。このように細胞周期に依存してサイクリの発現量が変化するが、Cdkの発現量は変化しない。Cdk5はサイクリンD,Eと結合するが活性化されず、最終分裂を終えた神経細胞に発現しているp35(CdkR1)またはp39(Cdk5R2)と結合することで活性型となる[2]。Cdk5は神経細胞以外の細胞にも発現しているが、神経細胞で高いレベルの発現がある。サイクリン依存性キナーゼはプロリン指向性セリン・スレオニンキナーゼで基質のリン酸化部位は[S/T]PX[K/R]のコンセンサスモチーフを持つ(S/Tはリン酸化されるセリン・スレオニン、 Pはプロリン、Xは不特定のアミノ酸、KはリジンRはアルギニン)。Cdk5は様々な神経細胞特異的な数多くのタンパク質がリン酸化基質として同定されており、それぞれリン酸化による機能制御が報告されている(表1)。活性化サブユニットp35 タンパク質は、Cdk5とヘテロダイマー形成後リン酸化され、プロテアソーム系で分解される事により、量的に調整されている[3]。神経細胞の障害などによる細胞内へのCaイオンの流入により活性化したカルパインによりp25に限定分解される[4]。p25はCdk5への結合と活性化に必要なドメインを含んでいる。しかし、リン酸化によりプロテアソーム系への分解へとは進まずCdk5/p25は安定した活性型のキナーゼとなる。さらにp35はN末端のミリストリル化により細胞膜にアンカーしているのに対し、N末を欠くp25は細胞膜にアンカリングせず、細胞質さらには核へ局在を変え、結果的に細胞質や核でのCdk5活性の上昇を来たす。アルツハイマー病患者脳でのp25の増加とCdk5活性の上昇が報告され、p25産生がタウタンパク質の過剰リン酸化と神経細胞死をもたらすという説が提唱されている[4]。しかし、アルツハイマー病では逆にp25量は低下しており、Cdk5活性も必ずしも上昇していないとの反論もある。その他パーキンソン病[5]やハンチントン病[6]などの神経変性疾患の病態に関与している可能性が示唆されている。これら病態でもパーキンやハッチンチンがCdk5の基質であり、Cdk5活性の上昇によりリン酸化型が増加することが病態と関連づけられるが、Cdk5が神経細胞死に対して保護的に働き、Cdk5活性が低下する細胞死を引き起こしやすくなるという報告がある[7]。このように、Cdk5活性は神経細胞の生存において厳格に制御される必要があるが、神経機能においても同様であり、結合により活性を示さないサイクリンEとの結合もその活性制御に必要であることが示された[8]。すなわち、サイクリンE量の低下はCdk5活性の上昇を来し、シナプス数やシナプス可塑性に影響を与えることが示された。また、Cdk5はキナーゼとしての機能以外に、グルタミン酸受容体のNR2Bとタンパク質分解酵素カルパインと複合体を形成し、カルパインによるNR2Bの分解を調整しており、Cdk5のタンパク質量の低下はNR2Bのポストシナプスでの量的増加を来す[9]。さらに近年、神経細胞以外の細胞での機能が推定されている。オリゴデンドロサイトの分化での機能やCdk5によるPPARγのリン酸化がインスリン抵抗性の発生機序にかかわっている可能性が示唆されている[10]

表1.Cdk5の主な基質

参考文献

1. ↑ Morgan, David O. (1997) "Cyclin-Dependent Kinase: Engines, Clocks, and Microprocessors." Annual Review of Cell and Developmental Biology. 13:261-291.

2. ↑ Cdk5 book

3. ↑ Patrick et al.(1998) p35, the neuronal-specific activator of cyclin-dependent kinase 5 (Cdk5) is degraded by the ubiquitin-proteasome pathway. J Biol Chem. 273:24057-64.

4. ↑ Patrick et al. (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 402(6762):615-22.

5. ↑Smith et al. (2003) Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A. 100:13650-5.

6. ↑Luo et al. (2005) Cdk5 phosphorylation of huntingtin reduces its cleavage by caspases: implications for mutant huntingtin toxicity. J Cell Biol. 169:647-56.

7. ↑Cheung et al. (2008) Cyclin-dependent kinase 5 supports neuronal survival through phosphorylation of Bcl-2. J Neurosci. 28:4872-7.

8. ↑Odajima J. et al. (2011) Cyclin E constrains Cdk5 activity to regulate synaptic plasticity and memory formation. Dev Cell. 2011 Oct 18;21(4):655-68.

9. ↑Hawasli AH. et al. (2007) Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat. Neurosci. 10, 880-886.

10. ↑Choi, JH. et al. (2010) Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5. Nature, 466, 451–456.


(執筆者:大島登志男 担当編集委員:尾藤 晴彦)

  1. Morgan, D.O. (1997).
    Cyclin-dependent kinases: engines, clocks, and microprocessors. Annual review of cell and developmental biology, 13, 261-91. [PubMed:9442875] [WorldCat] [DOI]
  2. Resource not found in PubMed.
  3. Resource not found in PubMed.
  4. 4.0 4.1 Resource not found in PubMed.
  5. Resource not found in PubMed.
  6. Resource not found in PubMed.
  7. Resource not found in PubMed.
  8. Resource not found in PubMed.
  9. Resource not found in PubMed.
  10. Resource not found in PubMed.