「中枢パターン生成器」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
9行目: 9行目:
The intrinsic factors in the act of progression in the mammal. <br>Proc R Soc Lond B Biol Sci. 1911, 84:308–319.
The intrinsic factors in the act of progression in the mammal. <br>Proc R Soc Lond B Biol Sci. 1911, 84:308–319.
</ref>。これは感覚入力や脊髄の上位中枢からの入力がなくても下部胸髄から腰髄に局在する神経回路だけでリズミックな関節の動きが生み出されることを示唆した初めての例である<ref name=ref2><pubmed> 18582502 </pubmed></ref>。
</ref>。これは感覚入力や脊髄の上位中枢からの入力がなくても下部胸髄から腰髄に局在する神経回路だけでリズミックな関節の動きが生み出されることを示唆した初めての例である<ref name=ref2><pubmed> 18582502 </pubmed></ref>。
(Stuart and Hultborn 2008)。またCPGという用語が神経科学研究の論文において初めて用いられたのは、1960年代のWilsonとWymanによるバッタの飛翔の神経メカニズムに関する研究とされる<ref name=ref3><pubmed>14268949 </pubmed></ref>。哺乳類においては、咀嚼・吸啜の際の顎関節や舌の運動<ref name=ref4><pubmed>22342735</pubmed></ref>、呼吸の際の横隔膜や胸郭の運動<ref name=ref5><pubmed>12598679</pubmed></ref>、そして歩行の際の四肢の運動<ref name=ref6><b> Sten Grillner.</b>  <br>Control of locomotion in bipeds, tetrapods, and fish. <br>In Handbook of Physiology: The Nervous System, 2, Motor Control, ed. V Brooks, 1981, pp. 1176–236. Bethesda, MA: Am.</ref>を制御するCPGが知られている。他の脊椎動物では魚類や両生類の泳動などを生み出している<ref name=ref7><pubmed>7571002</pubmed></ref><ref name=ref8> <pubmed>9928299</pubmed></ref>。また無脊椎動物においても上述の昆虫(バッタ)の飛翔の他、軟体動物([[wikipedia:ja:クリオネ|クリオネ]])の泳動<ref name=ref9><pubmed>9928301</pubmed></ref>あるいは甲殻類(イセエビなど)の胃咀嚼器のリズミックな運動を制御する神経回路<ref name=ref10><pubmed>9928300</pubmed></ref>がCPGとして知られており、神経回路のしくみ、特に細胞レベルの機能解析が進んでいる。ここでは主に脊椎動物の移動運動(Locomotion)、特に哺乳類の歩行と魚類の泳動を生成するCPGについて述べる。
(Stuart and Hultborn 2008)。またCPGという用語が神経科学研究の論文において初めて用いられたのは、1960年代のWilsonとWymanによるバッタの飛翔の神経メカニズムに関する研究とされる<ref name=ref3><pubmed>14268949 </pubmed></ref>。哺乳類においては、咀嚼・吸啜の際の顎関節や舌の運動<ref name=ref4><pubmed>22342735</pubmed></ref>、呼吸の際の横隔膜や胸郭の運動<ref name=ref5><pubmed>12598679</pubmed></ref>、そして歩行の際の四肢の運動<ref name=ref6><b> Sten Grillner.</b>  <br>Control of locomotion in bipeds, tetrapods, and fish. <br>In Handbook of Physiology: The Nervous System, 2, Motor Control, ed. V Brooks, 1981, pp. 1176–236. Bethesda, MA: Am.</ref>を制御するCPGが知られている。他の脊椎動物では魚類や両生類の泳動などを生み出している<ref name=ref7><pubmed>7571002</pubmed></ref><ref name=ref8> <pubmed>9928299</pubmed></ref>。また無脊椎動物においても上述の[[wikipedia:ja:昆虫|昆虫]]([[wikipedia:ja:バッタ|バッタ]])の飛翔の他、[[wikipedia:ja:軟体動物|軟体動物]]([[wikipedia:ja:クリオネ|クリオネ]])の泳動<ref name=ref9><pubmed>9928301</pubmed></ref>あるいは[[wikipedia:ja:甲殻類|甲殻類]]([[wikipedia:ja:イセエビ|イセエビ]]など)の胃咀嚼器のリズミックな運動を制御する神経回路<ref name=ref10><pubmed>9928300</pubmed></ref>がCPGとして知られており、神経回路のしくみ、特に細胞レベルの機能解析が進んでいる。ここでは主に脊椎動物の移動運動(Locomotion)、特に哺乳類の歩行と魚類の泳動を生成するCPGについて述べる。


== 基本的なしくみ==  
== 基本的なしくみ==  
17行目: 17行目:
===回路の局在と修飾様式===
===回路の局在と修飾様式===
哺乳類の歩行のCPGは脊髄に局在している。ラット脊髄の破壊実験から歩行の際の後肢の動きを形成するCPGを構成する重要なニューロンの細胞体は下部胸髄から腰髄の腹側部に局在していることがわかっている<ref name=ref11><pubmed>16776587</pubmed></ref>。
哺乳類の歩行のCPGは脊髄に局在している。ラット脊髄の破壊実験から歩行の際の後肢の動きを形成するCPGを構成する重要なニューロンの細胞体は下部胸髄から腰髄の腹側部に局在していることがわかっている<ref name=ref11><pubmed>16776587</pubmed></ref>。
 ネコを実験モデルとして用いた研究から視覚や聴覚などの外環境の情報は大脳皮質において処理され、脳幹のニューロン群を経由して運動の開始や歩容の選択が行なわれ、これらの司令によって脊髄のCPGが駆動されることが明らかになっている。これによって、表面が不均一の地面を歩いたり、障害物を避けるといった外環境に適応した歩行運動を行なうことができると考えられる<ref name=ref13><pubmed>6699782</pubmed></ref>, <ref name=ref14><pubmed>9928303</pubmed></ref>。また、歩行CPGの活動は末梢感覚受容器からの求心性入力によって修飾される。例えば、歩行中に筋の張力の変化を検知するゴルジ腱器官や筋の長さの変化を検知する筋紡錘からの入力によって、歩行リズムの周期がリセットされる<ref name=ref15><pubmed>11351007</pubmed></ref>。
 ネコを実験モデルとして用いた研究から視覚や聴覚などの外環境の情報は大脳皮質において処理され、脳幹のニューロン群を経由して運動の開始や歩容の選択が行なわれ、これらの司令によって脊髄のCPGが駆動されることが明らかになっている。これによって、表面が不均一の地面を歩いたり、障害物を避けるといった外環境に適応した歩行運動を行なうことができると考えられる<ref name=ref13><pubmed>6699782</pubmed></ref>, <ref name=ref14><pubmed>9928303</pubmed></ref>。また、歩行CPGの活動は末梢感覚受容器からの求心性入力によって修飾される。例えば、歩行中に筋の張力の変化を検知するゴルジ腱器官や筋の長さの変化を検知する[[筋紡錘]]からの入力によって、歩行運動中の屈筋あるいは伸筋の活動が調節されている<ref name=ref15><pubmed>11351007</pubmed></ref>。


===ハーフセンター仮説===
===ハーフセンター仮説===
[[image:F2half-centre-model.jpg‎ |thumb|200px|'''図2 歩行運動の際の屈筋と伸筋を例としたハーフセンター仮説'']]イギリスのGraham Brownによって1910年代に提唱されスウェーデンのLundbergによって継承された説で、並列に出力する二つの回路が相互に抑制をすることによってそれぞれがリズミックで交代性のパターンを示すというものである(図2)<ref name=ref2><pubmed> 18582502 </pubmed></ref>。例えば、歩行CPGにおいては、屈筋と伸筋あるいは左右の脚のそれぞれパターンを形成する回路が独立して存在し、相互に抑制することによって、それぞれが交互に活動すると考えられている(図2)。この相互抑制を担うニューロンの有力な候補の一つとして、[[伸張反射]]の際に収縮した筋の拮抗筋を支配する運動ニューロンを抑制することが知られているIa抑制性ニューロンがある<ref name=ref16><pubmed>17936363</pubmed></ref>。
[[image:F2half-centre-model.jpg‎ |thumb|200px|'''図2 歩行運動の際の屈筋と伸筋を例としたハーフセンター仮説'']]1910年代にイギリスのGraham Brownが提唱し、スウェーデンのLundbergによって継承された説で、並列に出力する二つの回路が相互に抑制をすることによってそれぞれがリズミックで交代性のパターンを示すというものである(図2)<ref name=ref2><pubmed> 18582502 </pubmed></ref>。例えば、歩行CPGにおいては、屈筋と伸筋あるいは左右の脚のそれぞれパターンを形成する回路が独立して存在し、相互に抑制することによって、それぞれが交互に活動すると考えられている(図2)。[[脊髄介在ニューロン]]のうち、この相互抑制を担う有力な候補の一つとして、[[伸張反射]]の際に収縮した筋の拮抗筋を支配する[[運動ニューロン]]を抑制することが知られているIa抑制性ニューロンがある<ref name=ref16><pubmed>17936363</pubmed></ref>。


===構成ニューロンの性質===
===構成ニューロンの性質===
41

回編集