「視交叉上核」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
11行目: 11行目:


{{box
{{box
|text=視交叉上核は、[[視交叉]]の直上で[[視床下部]][[第三脳室]]底部にある一対の小さな神経核であり、[[睡眠]]と行動や[[内分泌]]等の生理的現象の[[概日リズム]]を支配する最高位中枢である。すなわち、視交叉上核は、末梢の臓器に存在する概日時計の振動や位相を調律する。概日時計の基礎となる[[wikipedia:ja:転写|転写]]-[[wikipedia:ja:翻訳|翻訳]]のフィードバックループを持ちかつ独自の細胞間コミュニケーションが高度に発達しており、概日時計の中枢として機能する<ref name=ref1><pubmed>18419314</pubmed></ref>。
|text= 視交叉上核は、[[視交叉]]の直上で[[視床下部]][[第三脳室]]底部にある一対の小さな神経核であり、[[睡眠]]と行動や[[内分泌]]等の生理的現象の[[概日リズム]]の最高位中枢である。視交叉上核の概日時計は一日の時刻情報を全身に送り出し、臓器に存在する概日時計の位相を調律する。視交叉上核は多数の細胞時計から構成され、お互いの細胞間コミュニケーションにより、きわめて明瞭で安定した時間情報を発信する概日時計の中枢として機能する<ref name=ref1><pubmed>18419314</pubmed></ref>。
}}
}}


==視交叉上核とは==
==視交叉上核とは==
 視交叉上核は、[[視交叉]]の直上で[[視床下部]][[第三脳室]]底部にある一対の小さな神経核であり、[[wikipedia:ja:哺乳類|哺乳類]]動物における[[睡眠]]と行動や[[内分泌]]等の生理的現象の[[概日リズム]]を支配する最高位中枢である。すなわち、視交叉上核は、末梢の臓器に存在する概日時計の振動や位相を調律する。このことは、生体から取り出した[[切片]]培養下の視交叉上核が、何週間も概日振動を示すこと、生体で視交叉上核を周辺の脳組織から切り離すと、視交叉上核では神経活動の概日リズムが見られるが、切り離された脳組織では観察されないこと、生体で視交叉上核を破壊すると概日リズムが失われるが、別の動物から採取した視交叉上核を移植すると概日リズムが回復すること、といった一連の実験から明らかになった。視交叉上核の個々の細胞は、概日時計の基礎となる[[wikipedia:ja:転写|転写]]-[[wikipedia:ja:翻訳|翻訳]]のフィードバックループを持つが、これは末梢の細胞がもつ機構と同じものである。しかし、視交叉上核には独自の細胞間コミュニケーションが高度に発達しており、これが視交叉上核が概日時計の中枢である所以とされている<ref name=ref1><pubmed>18419314</pubmed></ref>。
 視交叉上核は、[[視交叉]]の直上で[[視床下部]][[第三脳室]]底部にある一対の小さな神経核であり、[[wikipedia:ja:哺乳類|哺乳類]]動物における[[睡眠]]と行動や[[内分泌]]等の生理的現象の[[概日リズム]]を支配する最高位中枢である。視交叉上核の概日時計は時計中枢として他の脳部位や末梢臓器に見られないリズム形成能力を持つ。このことは、生体から取り出した[[切片]]培養下の視交叉上核は、外界からの調律刺激が無くとも何週間たっても概日振動を示すこと、生体で視交叉上核を周辺の脳組織から切り離すと、視交叉上核では神経活動の概日リズムが見られるが、切り離された脳組織では観察されないこと、生体で視交叉上核を破壊すると概日リズムが失われるが、別の動物から採取した視交叉上核を移植すると概日リズムが回復すること、といった一連の実験から明らかになった。視交叉上核の個々の細胞は、概日時計の基礎となる[[wikipedia:ja:転写|転写]]-[[wikipedia:ja:翻訳|翻訳]]のフィードバックループを持つが、これは末梢の細胞がもつ機構と同じものである。しかし、視交叉上核には独自の細胞間コミュニケーションが高度に発達しており、これが視交叉上核が概日時計の中枢である所以とされている<ref name=ref1><pubmed>18419314</pubmed></ref>。


==構造==
==構造==
 すべての哺乳類において、視交叉上核は視交叉の後部の直上に、第三脳室を挟むように存在する一対の卵形の神経核である。[[wikipedia:ja:ラット|ラット]]の視交叉上核の大きさは、吻尾方向に950 μm、幅が425 μm、背腹方向に400 μmである<ref name=ref2>'''van den Pol AN'''<BR>The suprachiasmatic nucleus: Morphological and cytochemical substrates for cellular interaction. <BR>In: Klein D C, Moore R Y, Reppert S M (eds) Suprachiasmatic nucleus: The mind clock.<br>''Oxford University press'' (1991)</ref>。前方と内側は[[内側視索前野]]に、背側と後方は[[前視床下部野]]に、腹側は視交叉によって囲まれている。
 すべての哺乳類において、視交叉上核は、視神経が脳底で形成する視交叉の後部の直上に、第三脳室を挟むように存在する一対の卵形の神経核である。[[wikipedia:ja:ラット|ラット]]の視交叉上核の大きさは、吻尾方向に950 μm、幅が425 μm、背腹方向に400 μmである<ref name=ref2>'''van den Pol AN'''<BR>The suprachiasmatic nucleus: Morphological and cytochemical substrates for cellular interaction. <BR>In: Klein D C, Moore R Y, Reppert S M (eds) Suprachiasmatic nucleus: The mind clock.<br>''Oxford University press'' (1991)</ref>。前方と内側は[[内側視索前野]]に、背側と後方は[[前視床下部野]]に、腹側は視交叉によって囲まれている。


=== 細胞構築===
=== 細胞構築===
33行目: 33行目:


=====AVP細胞=====
=====AVP細胞=====
: 背内側部に密に存在するAVP細胞については、直径8-9 μmの楕円形あるいは円形のものが多い。電子顕微鏡による超微形態学的観察によると、[[wikipedia:ja:粗面小胞体|粗面小胞体]]、[[wikipedia:ja:ミトコンドリア|ミトコンドリア]]、[[ゴルジ体]]、[[ニューロフィラメント]]等が発達している。AVP含有線維終末は視交叉上核の背内側領域に密に存在するが、腹外側部にはほとんどないのが特徴である。AVPの発現は、視交叉上核において、明暗条件下のみならず、恒常暗条件下においても、明期(主観的昼)に高く、暗期(主観的夜)に低い概日振動を示す。視交叉上核には、AVP[[受容体]]である[[V1]]aおよび[[V1b受容体]]が発現するとされるも、遺伝的にAVPが欠損した[[Brattleboroラット]]では行動異常は無く、V1a受容体で若干の行動周期延長が認められるのみである。このようにAVPおよびその受容体は視交叉上核内に大量に発現しているにもかかわらず、その働きが分っておらず、その役割の解明が待たれる。
: 背内側部に密に存在するAVP細胞については、直径8-9 μmの楕円形あるいは円形のものが多い。電子顕微鏡による超微形態学的観察によると、[[wikipedia:ja:粗面小胞体|粗面小胞体]]、[[wikipedia:ja:ミトコンドリア|ミトコンドリア]]、[[ゴルジ体]]、[[ニューロフィラメント]]等が発達している。AVP含有線維終末は視交叉上核の背内側領域に密に存在するが、腹外側部にはほとんどないのが特徴である。AVP mRNAの発現は、視交叉上核において、明暗条件下のみならず、恒常暗条件下においても、明期(主観的昼)に高く、暗期(主観的夜)に低い概日振動を示す。視交叉上核には、AVP[[受容体]]である[[V1]]aおよび[[V1b受容体]]が発現するとされるも、遺伝的にAVPが欠損した[[Brattleboroラット]]では行動異常は無く、V1a受容体で若干の行動周期延長が認められるのみである。このようにAVPおよびその受容体は視交叉上核内に大量に発現しているにもかかわらず、その働きが分っておらず、その役割の解明が待たれる。


=====VIP細胞=====
=====VIP細胞=====
39行目: 39行目:


=====GRP細胞=====
=====GRP細胞=====
: 同じく腹外側部に存在するGRP細胞は、その領域はかなりの部分がVIP細胞の分布と重複しているが、VIP細胞よりもさらに外側に存在する傾向がある。VIPとGRPは明暗条件下において、対称的な[[概日振動]]を示す。すなわち、VIPおよびその[[wikipedia:ja:mRNA|mRNA]]は明期に低く暗期に高いのに対して、GRPとそのmRNAは、明期に高く、暗期に低い振動を示す。しかしながら、これらの振動は恒暗条件下では消失する。GRP受容体も視交叉上核に発現し、この[[ノックアウトマウス]]は光に対する反応性が落ちている<ref name=ref4><pubmed>11752203</pubmed></ref>。また、分泌タンパク質である[[prokineticin 2]] (PK2)およびその受容体[[PKR2]]も視交叉上核に発現する。PKR2は視交叉上核からの直接投射部位である[[背内側核]]、視床[[室傍核]]、外側中隔核で発現していることや、ラットの脳室内にPK2を活動期に投与すると行動が抑制されるため、PK2は視交叉上核からの出力を担う分子とも考えられている<ref name=ref5><pubmed>12024206</pubmed></ref>。
: 同じく腹外側部に存在するGRP細胞は、その領域はかなりの部分がVIP細胞の分布と重複しているが、VIP細胞よりもさらに外側に存在する傾向がある。VIPとGRPは明暗条件下において、対称的な[[概日振動]]を示す。すなわち、VIPおよびその[[wikipedia:ja:mRNA|mRNA]]は明期に低く暗期に高いのに対して、GRPとそのmRNAは、明期に高く、暗期に低い振動を示す。しかしながら、これらの振動は恒暗条件下では消失する。GRP受容体も視交叉上核に発現し、この[[ノックアウトマウス]]は光に対する反応性が落ちている<ref name=ref4><pubmed>11752203</pubmed></ref>
 
=====PK2細胞=====
: 分泌タンパク質である[[prokineticin 2]] (PK2)およびその受容体[[PKR2]]も視交叉上核に発現する。PKR2は視交叉上核からの直接投射部位である[[背内側核]]、視床[[室傍核]]、外側中隔核で発現していることや、ラットの脳室内にPK2を活動期に投与すると行動が抑制されるため、PK2は視交叉上核からの出力を担う分子とも考えられている<ref name=ref5><pubmed>12024206</pubmed></ref>。


=====SST細胞=====
=====SST細胞=====
56行目: 59行目:


=== 出力 ===
=== 出力 ===
 脳神経核の一つである視交叉上核は、強い神経出力を持っている。解剖学的には、視交叉上核からの直接投射は、[[室傍核下部領域]] (SPVZ)、[[視束前野]] (POA)、[[腹内側核]] (VMH)、[[背内側核]] (DMH)、[[視床室傍核]] (PVT)、[[外側中隔核]] (LS) の6つの投射先が認められている。この視交叉上核からの遠心性線維のうち、SPVZへの投射が、7割以上を占める。この神経線維は視交叉上核の辺縁部から始まって背尾側へ走り、視床下部室傍核の腹側の境界部のSPVZへいたる。SPVZは、[[室傍核]]、[[室周囲核]]、[[視床前核]]、[[腹内側核]]、[[背内側核]]といった[[視床下部]]緒核、さらに、[[中脳中心灰白質]]、[[橋側腕核]]、[[弧束核]]、[[迷走神経背側核]]、延髄[[網様体]]、[[脊髄中間質側核]]など、中枢の自律神経系の核群と密接に連絡している。
 脳神経核の一つである視交叉上核は、強い神経出力を持っている。解剖学的には、視交叉上核からの直接投射は、[[室傍核下部領域]] (SPVZ)、[[視束前野]] (POA)、[[腹内側核]] (VMH)、[[背内側核]] (DMH)、[[視床室傍核]] (PVT)、[[外側中隔核]] (LS) の6つの投射先が認められている。この視交叉上核からの遠心性線維のうち、SPVZへの投射が、7割以上を占める。この神経線維は視交叉上核の辺縁部から始まって背尾側へ走り、視床下部室傍核の腹側の境界部のSPVZへいたる。SPVZは中枢の自律神経系の核群と密接に連絡しており、視交叉上核の時間シグナルを中継する。


==機能==
==機能==
76行目: 79行目:


===時空間的制御ネットワーク機構===
===時空間的制御ネットワーク機構===
 このような細胞時計により、視交叉上核の細胞は[[分散培養]]系においても安定した概日振動を示すが<ref name=ref7><pubmed>7718233 </pubmed></ref>、この細胞時計の分子機構は末梢の細胞においても共通したものである。実は、視交叉上核のマスター時計としての特殊性は、先述した神経伝達物質を介した「細胞間コミュニケーション」にある。これにより、末梢組織の概日振動はin vitroの培養系ではすぐに減衰してしまうのに対し、視交叉上核では神経細胞同士がお互いに連絡しあい同期することによって、組織として非常に安定した概日振動を何週間も生み出すことができる。最も重要な時計遺伝子のひとつであるPer1遺伝子のプロモーターの下流に、[[wikipedia:ja:ホタル|ホタル]]発光遺伝子[[luciferase]]をつないだ[[レポーター遺伝子]]を導入したPer1-luc[[トランスジェニックマウス]]の視交叉上核切片培養系を用いたリアルタイムイメージングにより、個々の細胞におけるPer1の発現リズムを観察すると、常に、背内側部の特に[[第三脳室]]に面した領域からその振動は始まり、続いて中間部から腹外側部へと波のように広がっていく<ref name=ref8><pubmed>14631044</pubmed></ref>(動画1)。
 これまでのところ、視交叉上核の細胞とその他の脳部位や末梢臓器の細胞の間に、細胞時計の基盤である上述の転写・翻訳ループを構成する分子に違いがあるということは言われていない。従って、視交叉上核のマスター時計としての特殊性は、先述した神経伝達物質を介した細胞間コミュニケーションにあると考えられる。細胞間連絡の少ない末梢組織の概日振動はin vitroの培養系ではすぐに減衰してしまうのに対し、視交叉上核では神経細胞同士がお互いに連絡しあい同期することによって、組織として非常に安定した概日振動を何週間も生み出すことができる。最も重要な時計遺伝子のひとつであるPer1遺伝子のプロモーターの下流に、[[wikipedia:ja:ホタル|ホタル]]発光遺伝子[[luciferase]]をつないだ[[レポーター遺伝子]]を導入したPer1-luc[[トランスジェニックマウス]]の視交叉上核切片培養系を用いたリアルタイムイメージングにより、個々の細胞におけるPer1の発現リズムを観察すると、常に、背内側部の特に[[第三脳室]]に面した領域からその振動は始まり、続いて中間部から腹外側部へと波のように広がっていく<ref name=ref8><pubmed>14631044</pubmed></ref>(動画1)。


 このような階層性のある時空間的制御ネットワーク機構は、[[Förster共鳴エネルギー移動]]を利用したCaシグナルの概日リズムを検出することによっても確認されている<ref name=ref9><pubmed>23213253</pubmed></ref>。この視交叉上核内ネットワークは概日リズムの特徴である温度補償性に寄与しているとされる<ref name=ref10><pubmed>20947768</pubmed></ref>。また最近、この特徴的な視交叉上核内の時空間特異性の形成が、分子レベルで明らかとなった。視交叉上核全体の中でも最背内側部の細胞において、時計遺伝子は最も早く発現するが、その理由の一つに、視交叉上核に特異的に発現する、[[GTPase]]活性を制御する[[RGS]]([[Regulator of G-protein signaling]])である[[RGS16]]がある。夜明け前に、最背内側部の細胞は[[RGS16]]を発現することで、ターゲットの抑制性Gタンパク質を不活性化し、細胞内の[[cAMP]]を増やし、[[cAMP responsive element]] ([[CRE]])シグナル伝達を亢進し、時計遺伝子Per1の転写を高める。RGS16変異マウスでは、視交叉上核において先頭集団である最背内側部におけるPer1の発現が遅れるため、マウス個体の概日行動リズムの周期が長くなる<ref name=ref11><pubmed>21610730</pubmed></ref>。 
 このような階層性のある時空間的制御ネットワーク機構は、[[Förster共鳴エネルギー移動]]を利用したCaシグナルの概日リズムでも確認されている<ref name=ref9><pubmed>23213253</pubmed></ref>。この視交叉上核内ネットワークは概日リズムの特徴である温度補償性に寄与しているとされる<ref name=ref10><pubmed>20947768</pubmed></ref>。また最近、この特徴的な視交叉上核内の時空間特異性の形成の一端が、分子レベルで明らかとなった。視交叉上核全体の中でも最背内側部の細胞において、時計遺伝子は最も早く発現するが、その理由の一つに、視交叉上核に特異的に発現する、[[GTPase]]活性を制御する[[RGS]]([[Regulator of G-protein signaling]])である[[RGS16]]がある。夜明け前に、最背内側部の細胞は[[RGS16]]を発現することで、ターゲットの抑制性Gタンパク質を不活性化し、細胞内の[[cAMP]]を増やし、[[cAMP responsive element]] ([[CRE]])シグナル伝達を亢進し、時計遺伝子Per1の転写を高める。RGS16変異マウスでは、視交叉上核において先頭集団である最背内側部におけるPer1の発現が遅れるため、マウス個体の概日行動リズムの周期が長くなる<ref name=ref11><pubmed>21610730</pubmed></ref>。 


=== 時計遺伝子と光同調 ===
=== 時計遺伝子と光同調 ===
 概日時計システムの位相は、日々、外界の24時間の明暗周期に同調していることは先に述べた。主観的夜に光刺激を行うと、マウスやラットは行動位相変動を起こすが、この際に、Per1の発現を急速に誘導した<ref name=ref13><pubmed>9428526</pubmed></ref>。しかし、行動位相変動を示さない主観的昼においては、光刺激はPer1を全く誘導しない。主観的夜における光刺激は、[[MAPK]]やCREB経路を活性化し、Per1遺伝子のプロモーター上にあるCRE配列に作用し、Per1の転写を誘導する。また、一般に行動位相変動にはある一定以上の照射光量が必要であり、その最小値を超えると行動リズムの位相変動の程度は照射光量の対数値に比例して大きくなり、ある一定の光量以上でプラトーに達する。行動位相変動を引き起こす光照射量の最小値と最大値は、Per1の発現誘導の最小値および最大値と一致し、位相変動量と発現誘導量は極めて強い相関を示す<ref name=ref13 />。よって、光同調機構において、Per1が重要な役割を担っていると考えられている。
 概日時計システムの位相は、外界の24時間の明暗周期に同調していることは先に述べた。主観的夜に光刺激を行うと、マウスやラットは行動位相変動を起こすが、この際に、Per1の発現を急速に誘導した<ref name=ref13><pubmed>9428526</pubmed></ref>。しかし、行動位相変動を示さない主観的昼においては、光刺激はPer1を全く誘導しない。主観的夜における光刺激は、[[MAPK]]やCREB経路を活性化し、Per1遺伝子のプロモーター上にあるCRE配列に作用し、Per1の転写を誘導する。また、一般に行動位相変動にはある一定以上の照射光量が必要であり、その最小値を超えると行動リズムの位相変動の程度は照射光量の対数値に比例して大きくなり、ある一定の光量以上でプラトーに達する。行動位相変動を引き起こす光照射量の最小値と最大値は、Per1の発現誘導の最小値および最大値と一致し、位相変動量と発現誘導量は極めて強い相関を示す<ref name=ref13 />。よって、光同調機構において、Per1が重要な役割を担っていると考えられている。


 [[wikipedia:ja:アカパンカビ|アカパンカビ]]の時計遺伝子の発現振動の位相が光刺激で12時間も一挙に変動する一方で、光刺激によるマウスの行動位相変動の最大値は3時間程度である。これは、光照射により誘導されるマウスPer1の発現が、網膜からの投射部位である腹外側部に限局しており、通常Per1が発現振動する背内側部では誘導されないためと考えられている。すなわち、視交叉上核内では、光照射でPer1が発現する部位と、発現しない部位が生じる。視交叉上核からの出力は、視交叉上核全体の時計の総計であるとすれば、哺乳類の行動リズムにおける位相変動がアカパンカビに比較して小さいことの説明が可能である。
 [[wikipedia:ja:アカパンカビ|アカパンカビ]]の時計遺伝子の発現振動の位相が光刺激で12時間も一挙に変動する一方で、光刺激によるマウスの行動位相変動の最大値は3時間程度である。これは、光照射により誘導されるマウスPer1の発現が、網膜からの投射部位である腹外側部に限局しており、通常Per1が発現振動する背内側部では誘導されないためと考えられている。すなわち、視交叉上核内では、光照射でPer1が発現する部位と、発現しない部位が生じる。視交叉上核からの出力は、視交叉上核全体の時計の総計であるとすれば、哺乳類の行動リズムにおける位相変動がアカパンカビに比較して小さいことの説明が可能である。
95行目: 98行目:
 視交叉上核の時間シグナルが、どのように出力されるのかは古くより議論がなされている。Silver らは<ref name=ref14><pubmed>8752274</pubmed></ref> 、視交叉上核を破壊し概日リズムを消失させたハムスターに、別個体の視交叉上核を、液性成分は通すが神経線維は通さない特殊な半透膜に包んで移植し、行動リズムを回復させることに成功した。この結果は、視交叉上核の液性成分にリズム惹起能力があることを証明している。視交叉上核細胞から分泌されるVIPが[[パラクリン]]制御により他の視交叉上核細胞のリズムを惹起させることが明らかにされたように<ref name=ref15><pubmed>21788520</pubmed></ref>、ペプチドは液性の候補物質である。以前より、視交叉上核細胞から分泌されたAVPが脳脊髄液中で著明な概日リズムを形成することが知られている<ref name=ref16><pubmed>4045552</pubmed></ref>。ペプチドに限らず、視交叉上核からの液性因子が、どのような分子メカニズムを経て、高次脳機能の日内変動を惹起するのかが注目される。
 視交叉上核の時間シグナルが、どのように出力されるのかは古くより議論がなされている。Silver らは<ref name=ref14><pubmed>8752274</pubmed></ref> 、視交叉上核を破壊し概日リズムを消失させたハムスターに、別個体の視交叉上核を、液性成分は通すが神経線維は通さない特殊な半透膜に包んで移植し、行動リズムを回復させることに成功した。この結果は、視交叉上核の液性成分にリズム惹起能力があることを証明している。視交叉上核細胞から分泌されるVIPが[[パラクリン]]制御により他の視交叉上核細胞のリズムを惹起させることが明らかにされたように<ref name=ref15><pubmed>21788520</pubmed></ref>、ペプチドは液性の候補物質である。以前より、視交叉上核細胞から分泌されたAVPが脳脊髄液中で著明な概日リズムを形成することが知られている<ref name=ref16><pubmed>4045552</pubmed></ref>。ペプチドに限らず、視交叉上核からの液性因子が、どのような分子メカニズムを経て、高次脳機能の日内変動を惹起するのかが注目される。


 光照射刺激は、視交叉上核から室傍核下部領域への投射を介して(編集コメント:この前の段落を構造にまとめたため、一言加えましたが、正しいかご確認下さい)、生体各部位の[[交感神経]]活動を上昇させ、[[副交感神経]]活動を減弱させる<ref name=ref17><pubmed>1464695 </pubmed></ref> <ref name=ref18><pubmed>12562939</pubmed></ref>。さらに、自律神経系の調節のみにとどまらず、光照射刺激は、視交叉上核-脊髄中間質外側核-副腎交感神経を介して、副腎のPer1の発現を誘導して、副腎皮質の糖質コルチコイドの分泌を惹起する<ref name=ref19><pubmed>16271530</pubmed></ref>。糖質コルチコイドは、糖質コルチコイド受容体(全身のほとんど全ての[[wikipedia:ja:臓器|臓器]]で発現している)に作用し、glucocorticoid responsive elementを介してPer1の転写を活性化し、臓器の時間をリセットすると想定される。概日リズム形成においても、この視交叉上核からの神経出力が[[wikipedia:ja:副腎|副腎]]においてホルモン分子へと変換される機構は、時間情報を全身に伝達する経路として注目されている。
 視交叉上核の時間シグナルの出力は、主に室傍核下部領域(SPVZ)へ投射する神経性の出力が主に担うと考えられる。この部位は、室傍核、室周囲核、視床前核、腹内側核、背内側核など周囲の視床下部の緒核と密接な連絡網があるだけでなく、上位の前帯状回、島皮質、扁桃体、分界条床核、下位の中脳中心灰白質、橋側腕核、弧束核、迷走神経背側核、延髄吻側腹外側部、延髄網様体諸核、脊髄中間質外側核などの中枢自律神経核群と密接に連絡している。すなわち、時間シグナルは中枢自律性核群を介し、交感神経、副交感神経に出力される。
 
 実際、光照射刺激は、視交叉上核を介して、生体各部位の交感神経活動を上昇させ、副交感神経活動を減弱させる。<ref name=ref17><pubmed>1464695 </pubmed></ref> <ref name=ref18><pubmed>12562939</pubmed></ref>。さらに、自律神経系の調節のみにとどまらず、光照射刺激は、視交叉上核-脊髄中間質外側核-副腎交感神経を介して、副腎のPer1の発現を誘導して、副腎皮質の糖質コルチコイドの分泌を惹起する<ref name=ref19><pubmed>16271530</pubmed></ref>。糖質コルチコイドは、糖質コルチコイド受容体(全身のほとんど全ての[[wikipedia:ja:臓器|臓器]]で発現している)に作用し、glucocorticoid responsive elementを介してPer1の転写を活性化し、臓器の時間をリセットすると想定される。概日リズム形成においても、この視交叉上核からの神経出力が[[wikipedia:ja:副腎|副腎]]においてホルモン分子へと変換される機構は、時間情報を全身に伝達する経路と考えられている。


== 関連項目 ==
== 関連項目 ==