「興奮性シナプス」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
58行目: 58行目:


==シナプス伝達過程==
==シナプス伝達過程==
[[ファイル:PPF&LTP.jpg|thumb|250 px|'''図3.シナプス可塑性の例''(a)[[海馬]]苔状線維(MF)-CA3シナプスで記録したPPF。短い時間間隔で連続刺激を行うと、1回目の応答(fEPSP)と比較して2回目の応答が増加している。(b)MF-CA3シナプスのLTP。100 Hz・100回の高頻度電気刺激を行うと、その後30分以上にわたってシナプス伝達が増強される。]]
[[ファイル:PPF&LTP.jpg|thumb|250 px|'''図3.シナプス可塑性の例'''(a)[[海馬]]苔状線維(MF)-CA3シナプスで記録したPPF。短い時間間隔で連続刺激を行うと、1回目の応答(fEPSP)と比較して2回目の応答が増加している。(b)MF-CA3シナプスのLTP。100 Hz・100回の高頻度電気刺激を行うと、その後30分以上にわたってシナプス伝達が増強される。]]


 シナプス前細胞で発生した活動電位は[[軸索]]を伝播し、シナプス前終末に到達する。シナプス前終末では、活動電位による脱分極で[[電位依存性カルシウムチャネル]]が開き、[[カルシウムイオン]]が細胞内に流入する。カルシウムイオンが引き金となってアクティブゾーンに係留されていたシナプス小胞が[[細胞膜]]に融合し、シナプス小胞に内包されていた神経伝達物質がシナプス間隙に開口放出される。
 シナプス前細胞で発生した活動電位は[[軸索]]を伝播し、シナプス前終末に到達する。シナプス前終末では、活動電位による脱分極で[[電位依存性カルシウムチャネル]]が開き、[[カルシウムイオン]]が細胞内に流入する。カルシウムイオンが引き金となってアクティブゾーンに係留されていたシナプス小胞が[[細胞膜]]に融合し、シナプス小胞に内包されていた神経伝達物質がシナプス間隙に開口放出される。
72行目: 72行目:
 興奮性シナプス、特に脳内のシナプスは、活動依存的に短期可塑性および長期可塑性を示し、動的な神経ネットワークを構築している。短期可塑性の代表的なものとして、paired pulse facilitation(PPF)およびpaired pulse depression(PPD)が挙げられる。これはシナプス前細胞を連続して刺激した際に、1回目のシナプス伝達と比較して2回目のシナプス伝達が促通(facilitation)または抑圧(depression)される現象である。短期可塑性のメカニズムには、シナプス前終末へのカルシウム流入と開口放出確率の変化、およびシナプス小胞プールの大きさが関与しているとされている<ref><pubmed> 11826273 </pubmed></ref>。
 興奮性シナプス、特に脳内のシナプスは、活動依存的に短期可塑性および長期可塑性を示し、動的な神経ネットワークを構築している。短期可塑性の代表的なものとして、paired pulse facilitation(PPF)およびpaired pulse depression(PPD)が挙げられる。これはシナプス前細胞を連続して刺激した際に、1回目のシナプス伝達と比較して2回目のシナプス伝達が促通(facilitation)または抑圧(depression)される現象である。短期可塑性のメカニズムには、シナプス前終末へのカルシウム流入と開口放出確率の変化、およびシナプス小胞プールの大きさが関与しているとされている<ref><pubmed> 11826273 </pubmed></ref>。


 長期可塑性には、高頻度刺激で誘発される[[長期増強]](long-term potentiation; LTP)および低頻度刺激で誘発される[[長期抑圧]](long-term depression; LTD)があり、数十分以上の時間わたってシナプス伝達強度が変化する<ref><pubmed> 15450156 </pubmed></ref>。また、シナプス前細胞-後細胞の発火タイミング依存的にLTPもしくはLTDが生じる[[スパイクタイミング依存性シナプス可塑性]](spike timing dependent plasticity; STDP)と呼ばれる現象が様々なシナプスで報告されている<ref><pubmed> 1681645 </pubmed></ref>。長期可塑性ではタンパク質リン酸化・脱リン酸化や転写・翻訳等の機構により長期的にシナプス伝達が変化するが、開口放出が変化する場合や伝達物質受容体が変化する場合など、可塑性の発現機構はシナプスの種類や刺激パターンによって多様である<ref><pubmed> 16261180 </pubmed></ref><ref><pubmed> 17292975 </pubmed></ref>。長期可塑性に伴って樹状突起のスパイン形態が変化が生じることも報告されており<ref><pubmed> 20138375 </pubmed></ref>、シナプスの機能と形態の双方が変化することで神経ネットワークの構築と改変が行われている。
 長期可塑性には、高頻度刺激で誘発される[[長期増強]](long-term potentiation; LTP)および低頻度刺激で誘発される[[長期抑圧]](long-term depression; LTD)があり、数十分以上の時間わたってシナプス伝達強度が変化する<ref><pubmed> 15450156 </pubmed></ref>。また、シナプス前細胞-後細胞の発火タイミング依存的にLTPもしくはLTDが生じる[[スパイクタイミング依存性シナプス可塑性]](spike timing dependent plasticity; STDP)と呼ばれる現象が様々なシナプスで報告されている<ref><pubmed> 1681645 </pubmed></ref>。長期可塑性ではタンパク質リン酸化・脱リン酸化や転写・翻訳等の機構により長期的にシナプス伝達が変化するが、開口放出が変化する場合や伝達物質受容体が変化する場合など、可塑性の発現機構はシナプスの種類や刺激パターンによって多様である<ref><pubmed> 16261180 </pubmed></ref><ref><pubmed> 17292975 </pubmed></ref>。長期可塑性に伴って樹状突起のスパイン形態が変化が生じることも報告されており<ref><pubmed> 20138375 </pubmed></ref>、シナプスの機能と形態が共に変化することで神経ネットワークの構築と改変が行われている。




26

回編集