「Nogo」の版間の差分

163 バイト除去 、 2012年2月4日 (土)
編集の要約なし
編集の要約なし
編集の要約なし
9行目: 9行目:
=== 研究の萌芽 <br>  ===
=== 研究の萌芽 <br>  ===


 今からおよそ80年前に、スペインの神経学者Ramon y Cajalが再生阻害の謎を解く重要なヒントを見いだす<ref>Ramon y Cajal, S. Degeneration and regeneration of the nervous system. Hafner, New York, 1928.</ref>。Cajalは、感覚を伝える後根神経という末梢神経の軸索を切断し、その後の軸索の再生を観察した。再生しかけた軸索は、脊髄の中に侵入できず、再生できなかった。その後、Aguayoらは、脊髄の損傷による欠損部を末梢神経の周囲組織を移植することで、このグラフト内を軸索が再生する結果を得た。これらにより、神経細胞自体には再生する力があり、神経細胞を取り巻く環境が再生に適していないのではないかと考えられるようになった。<br> 1980年代、更に研究が進展し、ミエリンが神経突起の伸展を抑制することが報告された。そして、Schwabらは、ミエリンの中に再生を阻害している分子が存在していると考え、ミエリンの各フラクションに対する抗体を作成した。In vitroの実験により、IN-1抗体はミエリンの作用を中和し、220 kDaの糖蛋白に結合することが判明した。また、IN-1抗体を脊髄損傷させたラットに投与すると、軸索再生と運動機能の回復が認められた<ref><pubmed> 2300171</pubmed></ref>。これら一連の成果により、軸索再生阻害という概念が実在のものとして信じられるようになった。  
 今からおよそ80年前に、スペインの神経学者Ramon y Cajalが再生阻害の謎を解く重要なヒントを見いだす。Cajalは、感覚を伝える後根神経という末梢神経の軸索を切断し、その後の軸索の再生を観察した。再生しかけた軸索は、脊髄の中に侵入できず、再生できなかった。その後、Aguayoらは、脊髄の損傷による欠損部を末梢神経の周囲組織を移植することで、このグラフト内を軸索が再生する結果を得た。これらにより、神経細胞自体には再生する力があり、神経細胞を取り巻く環境が再生に適していないのではないかと考えられるようになった。<br> 1980年代、更に研究が進展し、ミエリンが神経突起の伸展を抑制することが報告された。そして、Schwabらは、ミエリンの中に再生を阻害している分子が存在していると考え、ミエリンの各フラクションに対する抗体を作成した。In vitroの実験により、IN-1抗体はミエリンの作用を中和し、220 kDaの糖蛋白に結合することが判明した。また、IN-1抗体を脊髄損傷させたラットに投与すると、軸索再生と運動機能の回復が認められた<ref><pubmed> 2300171</pubmed></ref>。これら一連の成果により、軸索再生阻害という概念が実在のものとして信じられるようになった。  


=== Nogoとその受容体の発見<br>  ===
=== Nogoとその受容体の発見<br>  ===
45行目: 45行目:
 これらの結果から、Tessier-Lavigneのグループは、Nogo-66に別の受容体があるのではないかと考えた。Atwalらは、Nogo-66に対する受容体をスクリーニングし、NgRと共に、leukocyte immunoglobulin (Ig)-like recep- tor B2 (LILRB2)を発見した。これは、マウスのpaired immunoglobulin-like receptor B(PirB)のオルソログに当たる。PirBにはNogo-66のみならず、MAG、OMgpもNgRと同様に結合することが示され、PirBとNgRの両方を阻害することにより、ミエリンや、Nogo-66の軸索伸展阻害作用のほぼ完全な消失が証明された。<ref><pubmed> 18988857  </pubmed></ref><br>  
 これらの結果から、Tessier-Lavigneのグループは、Nogo-66に別の受容体があるのではないかと考えた。Atwalらは、Nogo-66に対する受容体をスクリーニングし、NgRと共に、leukocyte immunoglobulin (Ig)-like recep- tor B2 (LILRB2)を発見した。これは、マウスのpaired immunoglobulin-like receptor B(PirB)のオルソログに当たる。PirBにはNogo-66のみならず、MAG、OMgpもNgRと同様に結合することが示され、PirBとNgRの両方を阻害することにより、ミエリンや、Nogo-66の軸索伸展阻害作用のほぼ完全な消失が証明された。<ref><pubmed> 18988857  </pubmed></ref><br>  


 現在PirBの想定されるシグナル伝達機構は、SHP1/2と結合し、その脱リン酸化機構を介してTrkBのシグナルを制御するというものなど、現在報告が増えてきている。<ref><pubmed> 21364532</pubmed></ref>ただ、このPirBのノックアウトマウスにおいても,その脊髄損傷モデル、脳挫傷モデルにおいて、その軸索の再生が促進されることはなかった<ref><pubmed> 20881122</pubmed></ref><ref><pubmed>21087927</pubmed></ref>。今後は、更なる研究成果の蓄積が必要だろうと考えられる。  
 現在PirBの想定されるシグナル伝達機構は、SHP1/2と結合し、その脱リン酸化機構を介してTrkBのシグナルを制御するというものなど、現在報告が増えてきている。<ref><pubmed> 21364532</pubmed></ref>ただ、このPirBのノックアウトマウスにおいても,その脊髄損傷モデルにおいて、その軸索の再生が促進されることはなかった<ref><pubmed>21087927</pubmed></ref>。今後は、更なる研究成果の蓄積が必要だろうと考えられる。  


 更に、3つの主要なミエリン由来因子(MAG,Nogo,OMgp)はin vivoで再生阻害に働いているのか?これに関しても、最近否定的な結果が得られた。WIlliamらは、主要な再生阻害因子と考えられてきたNogo, MAG,OMgpのトリプルノックアウトマウスを作成して、軸索再生を詳細に脊髄損傷モデルにより検討したところ、全く再生が促進されないことが分かった。<ref><pubmed> 20547125</pubmed></ref>このことにより、ミエリン由来あるいは、グリア瘢痕由来の別の再生阻害因子の存在を考えるべきである。我々は、第4のミエリン由来因子としてRGM(repulsive guidance molecule)という分子が重要であることを報告している。 <ref><pubmed> 16585268 </pubmed></ref>  
 更に、3つの主要なミエリン由来因子(MAG,Nogo,OMgp)はin vivoで再生阻害に働いているのか?これに関しても、最近否定的な結果が得られた。WIlliamらは、主要な再生阻害因子と考えられてきたNogo, MAG,OMgpのトリプルノックアウトマウスを作成して、軸索再生を詳細に脊髄損傷モデルにより検討したところ、全く再生が促進されないことが分かった。<ref><pubmed> 20547125</pubmed></ref>このことにより、ミエリン由来あるいは、グリア瘢痕由来の別の再生阻害因子の存在を考えるべきである。我々は、第4のミエリン由来因子としてRGM(repulsive guidance molecule)という分子が重要であることを報告している。 <ref><pubmed> 16585268 </pubmed></ref>  
151

回編集