「Hodgkin-Huxley方程式」の版間の差分
細編集の要約なし |
Keijiimoto (トーク | 投稿記録) 細編集の要約なし |
||
| (5人の利用者による、間の64版が非表示) | |||
| 1行目: | 1行目: | ||
Hodgkin-Huxley Equations | |||
== 概略 == | |||
Alan Lloyd Hodgkin (1914--1998)とAndrew Fielding Huxley (1917- )は、ともにイギリスの電気生理学者である。イカの巨大軸索における活動電位の発生と伝搬を測定し、その解析から現在の電気生理学の基礎となる概念を生み出し、また興奮性細胞(神経細胞、心筋、骨格筋)の電気活動を定量的に扱う道を開いた。HodgkinとHuxleyは、電気生理学の基礎を築いた功績により、同じく電気生理学者のJohn Carew Ecclesとともに、1963年のノーベル医学・生理学賞を受賞している。 | |||
HodgkinとHuxleyの業績の意義は次のように要約できる。 | |||
#活動電位発生時に、ナトリウムイオン(Na<sup>+</sup>)とカリウムイオン(K<sup>+</sup>)が、細胞膜の別々の通路を通ることを示した。この発見はイオンチャネルの存在を予測するものであり、その後のイオンチャネル研究の源となった。なお、当時の論文では、イオンチャネル・チャネルといった用語は用いられておらず、コンダクタンスという用語が使用されている。 | |||
#Na<sup>+</sup>チャネル、K<sup>+</sup>チャネルがが開閉する非線形な動態を微分方程式を含む数式で表した。これらの式はまとめてHodgkin-Huxley方程式と呼ばれている。 | |||
#Na<sup>+</sup>チャネル、K<sup>+</sup>チャネルおよびleakチャネルを示す数式を組み合わせ、活動電位の発生・伝播を数値的に再現した。現在行われている興奮性細胞の電位シミュレーションは、要素が増えるなどして複雑になっているが基本は変わらない。 | |||
== <math>\textstyle m^3 h</math>と<math>\textstyle n^4</math> == | |||
未完成 | |||
== 電位変化 == | |||
未完成 | |||
== Two-state model: 基礎的な考え方* == | |||
2つの状態1と2をとる事の出来る系を考え、それぞれの状態にある確率を''p''1と''p''とする。''p''1と''p''2は時刻''t''の関数であり、''p''1(''t'')と''p''2(''t'')と表わされる。''p''1(''t'')と''p''2(''t'')は確率であるから、 | |||
::<math> | ::<math>p1(t) + p2(t) = 1\, </math> | ||
<br> の関係にある。いま状態1から状態2へ移っていく単位時間での割合(遷移率)をαとし、状態2から状態1への遷移率をβとする。 ''p''1(''t'')と''p''2(''t'')の時間的経過を表わす微分方程式は、 | |||
::<math> \frac{dp1(t)}{dt} = -\alpha p1(t) + \beta p2(t)</math> | |||
::<math> \frac{dp2(t)}{dt} = \alpha p1(t) - \beta p2(t)</math> | |||
と表される。αとβが定数であるとして、定常状態になれば、 | |||
::<math> \frac{dp1(\infty)}{dt} = -\alpha p1(\infty) + \beta p2(\infty) = 0</math> | |||
- | ::<math> \frac{dp2(t)}{dt} = \alpha p1(\infty) - \beta p2(\infty) = 0</math> | ||
ここで、 | |||
::<math>\ | ::<math>\textstyle p1(\infty) + p2(\infty) = 1</math> | ||
であるから、 | |||
::<math>\ | ::<math>p1(\infty) = \frac{\beta}{\alpha+\beta}</math> | ||
::<math>p2(\infty) = \frac{\alpha}{\alpha+\beta}</math> | |||
となる。また微分方程式を解析的に解くと、 | |||
::<math>\ | ::<math>p1(t) = \left(p1(0)-\frac{\beta}{\alpha+\beta}\right) e^{-(\alpha+\beta)t} + \frac{\beta}{\alpha+\beta} </math> | ||
::<math>p2(t) = \left(p2(0)-\frac{\alpha}{\alpha+\beta}\right) e^{-(\alpha+\beta)t} + \frac{\alpha}{\alpha+\beta} </math> | |||
となる。 これらの式は次のことを示している。 | |||
#''p''1(''t'')と''p''2(''t'')はそれぞれ指数関数的に''p''1(∞)と''p''2(∞)に近づいていく | |||
#その時定数τは<math>\frac{1}{\alpha+\beta}\, </math>である | |||
#これらの値''p''1(∞)、''p''2(∞)、τは、初期値''p''1(0)、''p''2(0)には依存しない。 | |||
さらに、 | |||
::<math>q1(t) = p1(t) - \frac{\beta}{\alpha+\beta} </math> | |||
::<math>q2(t) = p2(t) - \frac{\alpha}{\alpha+\beta} </math> | |||
と表すとすると、 | |||
::<math> q1(t) = q1(0)e^{-(\alpha + \beta)}\, </math> | |||
::<math> q2(t) = q2(0)e^{-(\alpha + \beta)}\, </math> | |||
とより単純な形式となる。この関係は微分方程式の数値計算でよく用いられる。 | |||
: | == 電位固定法: 基礎となった技術* == | ||
Hodgkin-Huxley以前に、電気生理学の実験が行われていなかったわけではない。電流と電位変化に関する研究は、かなり多く行われていた。しかしながら、細胞にはいろいろなイオンチャネルを通して電流が流れるため、細胞の電位''v''と外部から流す電流''I''<sub>ext</sub>の間の関係は、 | |||
::<math>\frac{dv}{dt} = -\frac{1}{C}\left(\sum_X G_{X}(v-E_X) - I_{ext}\right)</math> | ::<math>\frac{dv}{dt} = -\frac{1}{C}\left(\sum_X G_{X}(v-E_X) - I_{ext}\right)</math> | ||
'' | となり、実験データの解釈は単純ではない。電位をコントロールして行う実験方法であるvoltage clamp(電位固定法)は、1940年代にアメリカの生物物理学者Kenneth Cole (1900 - 1984)らにより開発された。HodgkinとHuxleyはこのvoltage-clampを巧みに利用して大きな成果を得る事が出来たと言える。上記の式で''v''が一定となるように外部電流を''I''<sub>clamp</sub>を流すと、左辺は0となるため、 | ||
::<math> I_{clamp} = \sum G_X (v - E_x)\, </math> | |||
という関係が得られる。もし溶液の組成を工夫しチャネルのブロッカーなどを用いて、イオンチャネル''A''を流れる電流が測れたとすると、 | |||
::<math>I_{clamp} = G_A (v - E_A)\, </math> | ::<math>I_{clamp} = G_A (v - E_A)\, </math> | ||
となる。これはOhmの法則である。ここで''I''<sub>clamp</sub>は実験の測定値、''v''は実験の設定値、''E''<sub>A</sub>は実験条件で定まる定数なので、イオンチャネル''A''のコンダクタンス''G''<sub>A</sub>を、 | |||
::<math>G_{A} = \frac{I_{clamp}}{v-E_A}\, </math> | ::<math>G_{A} = \frac{I_{clamp}}{v-E_A}\, </math> | ||
と算出できることになる。 | |||
== | == HHモデルに対する批判 == | ||
#ゲート電流 | |||
#Single-channel recording | |||
#Markovモデル | |||
#Fractalモデルとの論争 | |||
== | == 現在におけるHHモデル == | ||
未完成 | |||
== | == References == | ||
未完成 | |||
<references /> | <references /> | ||
2012年2月10日 (金) 06:31時点における版
Hodgkin-Huxley Equations
概略
Alan Lloyd Hodgkin (1914--1998)とAndrew Fielding Huxley (1917- )は、ともにイギリスの電気生理学者である。イカの巨大軸索における活動電位の発生と伝搬を測定し、その解析から現在の電気生理学の基礎となる概念を生み出し、また興奮性細胞(神経細胞、心筋、骨格筋)の電気活動を定量的に扱う道を開いた。HodgkinとHuxleyは、電気生理学の基礎を築いた功績により、同じく電気生理学者のJohn Carew Ecclesとともに、1963年のノーベル医学・生理学賞を受賞している。
HodgkinとHuxleyの業績の意義は次のように要約できる。
- 活動電位発生時に、ナトリウムイオン(Na+)とカリウムイオン(K+)が、細胞膜の別々の通路を通ることを示した。この発見はイオンチャネルの存在を予測するものであり、その後のイオンチャネル研究の源となった。なお、当時の論文では、イオンチャネル・チャネルといった用語は用いられておらず、コンダクタンスという用語が使用されている。
- Na+チャネル、K+チャネルがが開閉する非線形な動態を微分方程式を含む数式で表した。これらの式はまとめてHodgkin-Huxley方程式と呼ばれている。
- Na+チャネル、K+チャネルおよびleakチャネルを示す数式を組み合わせ、活動電位の発生・伝播を数値的に再現した。現在行われている興奮性細胞の電位シミュレーションは、要素が増えるなどして複雑になっているが基本は変わらない。
構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle m^3 h} と構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle n^4}
未完成
電位変化
未完成
Two-state model: 基礎的な考え方*
2つの状態1と2をとる事の出来る系を考え、それぞれの状態にある確率をp1とpとする。p1とp2は時刻tの関数であり、p1(t)とp2(t)と表わされる。p1(t)とp2(t)は確率であるから、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle p1(t) + p2(t) = 1\, }
の関係にある。いま状態1から状態2へ移っていく単位時間での割合(遷移率)をαとし、状態2から状態1への遷移率をβとする。 p1(t)とp2(t)の時間的経過を表わす微分方程式は、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \frac{dp1(t)}{dt} = -\alpha p1(t) + \beta p2(t)}
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \frac{dp2(t)}{dt} = \alpha p1(t) - \beta p2(t)}
と表される。αとβが定数であるとして、定常状態になれば、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \frac{dp1(\infty)}{dt} = -\alpha p1(\infty) + \beta p2(\infty) = 0}
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \frac{dp2(t)}{dt} = \alpha p1(\infty) - \beta p2(\infty) = 0}
ここで、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \textstyle p1(\infty) + p2(\infty) = 1}
であるから、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle p1(\infty) = \frac{\beta}{\alpha+\beta}}
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle p2(\infty) = \frac{\alpha}{\alpha+\beta}}
となる。また微分方程式を解析的に解くと、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle p1(t) = \left(p1(0)-\frac{\beta}{\alpha+\beta}\right) e^{-(\alpha+\beta)t} + \frac{\beta}{\alpha+\beta} }
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle p2(t) = \left(p2(0)-\frac{\alpha}{\alpha+\beta}\right) e^{-(\alpha+\beta)t} + \frac{\alpha}{\alpha+\beta} }
となる。 これらの式は次のことを示している。
- p1(t)とp2(t)はそれぞれ指数関数的にp1(∞)とp2(∞)に近づいていく
- その時定数τは構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \frac{1}{\alpha+\beta}\, } である
- これらの値p1(∞)、p2(∞)、τは、初期値p1(0)、p2(0)には依存しない。
さらに、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle q2(t) = p2(t) - \frac{\alpha}{\alpha+\beta} }
と表すとすると、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle q1(t) = q1(0)e^{-(\alpha + \beta)}\, }
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle q2(t) = q2(0)e^{-(\alpha + \beta)}\, }
とより単純な形式となる。この関係は微分方程式の数値計算でよく用いられる。
電位固定法: 基礎となった技術*
Hodgkin-Huxley以前に、電気生理学の実験が行われていなかったわけではない。電流と電位変化に関する研究は、かなり多く行われていた。しかしながら、細胞にはいろいろなイオンチャネルを通して電流が流れるため、細胞の電位vと外部から流す電流Iextの間の関係は、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle \frac{dv}{dt} = -\frac{1}{C}\left(\sum_X G_{X}(v-E_X) - I_{ext}\right)}
となり、実験データの解釈は単純ではない。電位をコントロールして行う実験方法であるvoltage clamp(電位固定法)は、1940年代にアメリカの生物物理学者Kenneth Cole (1900 - 1984)らにより開発された。HodgkinとHuxleyはこのvoltage-clampを巧みに利用して大きな成果を得る事が出来たと言える。上記の式でvが一定となるように外部電流をIclampを流すと、左辺は0となるため、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle I_{clamp} = \sum G_X (v - E_x)\, }
という関係が得られる。もし溶液の組成を工夫しチャネルのブロッカーなどを用いて、イオンチャネルAを流れる電流が測れたとすると、
- 構文解析に失敗 (SVG (ブラウザーのプラグインで MathML を有効にできます): サーバー「https://wikimedia.org/api/rest_v1/」から無効な応答 ("Math extension cannot connect to Restbase."):): {\displaystyle I_{clamp} = G_A (v - E_A)\, }
となる。これはOhmの法則である。ここでIclampは実験の測定値、vは実験の設定値、EAは実験条件で定まる定数なので、イオンチャネルAのコンダクタンスGAを、
と算出できることになる。
HHモデルに対する批判
- ゲート電流
- Single-channel recording
- Markovモデル
- Fractalモデルとの論争
現在におけるHHモデル
未完成
References
未完成