「アミロイドβタンパク質」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
21行目: 21行目:


==産生==
==産生==
 cDNAクローニングによりAβは前駆タンパク質である[[Amyloid-β precursor protein]]([[APP]])の部分断片であること、[[βセクレターゼ]]および[[γセクレターゼ]]による連続した二段階切断によって切りだされ、細胞外へと[[分泌]]されることが示された<ref><pubmed> 20139999 </pubmed></ref>。βセクレターゼ活性は[[BACE1]]と呼ばれる[[膜結合型アスパラギン酸プロテアーゼ]]によって担われており、その切断が総Aβ産生量を規定している。γセクレターゼはPresenilinを活性中心サブユニットとし、[[ニカストリン]]、[[Aph-1]]、[[Pen-2]]と膜タンパク複合体<ref><pubmed> 12660785 </pubmed></ref>として活性を発揮する膜内配列切断アスパラギン酸プロテアーゼ<ref><pubmed> 23585568 </pubmed></ref>であり、APPの膜貫通領域を細胞質側から徐々に切断し最終的にAβを分泌せしめる。Presenilinは9回膜貫通型構造を取り、第6膜貫通領域にYDモチーフ、第7膜貫通領域にGxGDモチーフと呼ばれる活性中心アミノ酸残基を含むモチーフを持つ。また第8および第9膜貫通領域の間にPALモチーフと呼ばれる種間保存性の高い一次配列を持つ。これら3つのモチーフを含むプロテアーゼは古細菌から保存されており、[http://merops.sanger.ac.uk/cgi-bin/famsum?family=a22 Peptidase family A22]としてMEROPSデータベース上で分類されている。
 cDNAクローニングによりAβは前駆タンパク質である[[Amyloid-β precursor protein]]([[APP]])の部分断片であること、[[βセクレターゼ]]および[[γセクレターゼ]]による連続した二段階切断によって切りだされ、細胞外へと[[分泌]]されることが示された<ref><pubmed> 20139999 </pubmed></ref>。βセクレターゼ活性は[[BACE1]]と呼ばれる[[一回膜貫通型アスパラギン酸プロテアーゼ]]によって担われており、その切断が総Aβ産生量を規定している。γセクレターゼはPresenilinを活性中心サブユニットとし、[[ニカストリン]]、[[Aph-1]]、[[Pen-2]]と膜タンパク複合体<ref><pubmed> 12660785 </pubmed></ref>として活性を発揮する膜内配列切断アスパラギン酸プロテアーゼ<ref><pubmed> 23585568 </pubmed></ref>であり、APPの膜貫通領域を細胞質側から徐々に切断し最終的にAβを分泌せしめる。Presenilinは9回膜貫通型構造を取り、第6膜貫通領域にYDモチーフ、第7膜貫通領域にGxGDモチーフと呼ばれる活性中心アミノ酸残基を含むモチーフを持つ。また第8および第9膜貫通領域の間にPALモチーフと呼ばれる種間保存性の高い一次配列を持つ。これら3つのモチーフを含む膜結合型プロテアーゼは古細菌から保存されており、[http://merops.sanger.ac.uk/cgi-bin/famsum?family=a22 Peptidase family A22]としてMEROPSデータベース上で分類されている。しかし4種類の膜タンパク質からなる複合体形成を必要とするのはγセクレターゼのみである。


 一方APPにはAβ配列の16番目で[[αセクレターゼ]]による切断を受ける代謝経路も存在する。この結果生じたC末端断片もγセクレターゼによる切断を受けてp3と呼ばれる短い断片が分泌される。この場合はAβ産生には至らないため、[[アルツハイマー病]]発症に対して防御的な経路と考えられる。神経細胞における主たるαセクレターゼとしてはADAM9、ADAM10、ADAM17が候補として考えられている。
 一方APPにはAβ配列の16番目で[[αセクレターゼ]]による切断を受ける代謝経路も存在する。この結果生じたC末端断片もγセクレターゼによる切断を受けてp3と呼ばれる短い断片が分泌される。この場合はAβ産生には至らないため、[[アルツハイマー病]]発症に対して防御的な経路と考えられる。神経細胞における主たるαセクレターゼとしてはADAM9、ADAM10、ADAM17が候補として考えられている。
34行目: 34行目:


 このうちAβ42は<i>in vitro</i>で凝集性が高く<ref><pubmed> 8490014 </pubmed></ref>、AD患者脳においても初期から優位に蓄積することが知られている<ref><pubmed> 8043280 </pubmed></ref>。最近、Aβ43が更に凝集性が高い分子種であり、AD脳でも蓄積していることが示され、AβのC末端長の重要性が再確認されている<ref><pubmed> 21725313 </pubmed></ref>。また産生後に生じる最N末端の部分分解とピログルタミル化<ref><pubmed> 7857653 </pubmed></ref>も非常に疎水性が上がるため重要であると考えられている。そのためアルツハイマー病患者脳に老人斑として蓄積している最も主要なAβは、3番目の[[グルタミン酸]]がピログルタミル化し、最C末端が42番目のアラニンで終わっている分子種であると想定されている。
 このうちAβ42は<i>in vitro</i>で凝集性が高く<ref><pubmed> 8490014 </pubmed></ref>、AD患者脳においても初期から優位に蓄積することが知られている<ref><pubmed> 8043280 </pubmed></ref>。最近、Aβ43が更に凝集性が高い分子種であり、AD脳でも蓄積していることが示され、AβのC末端長の重要性が再確認されている<ref><pubmed> 21725313 </pubmed></ref>。また産生後に生じる最N末端の部分分解とピログルタミル化<ref><pubmed> 7857653 </pubmed></ref>も非常に疎水性が上がるため重要であると考えられている。そのためアルツハイマー病患者脳に老人斑として蓄積している最も主要なAβは、3番目の[[グルタミン酸]]がピログルタミル化し、最C末端が42番目のアラニンで終わっている分子種であると想定されている。
 凝集したAβが神経細胞毒性を発揮する機構として近年[[オリゴマー仮説]]が注目されている。特に神経細胞死を惹起する前にオリゴマーがAβ毒性受容体を介してシナプス毒性を引き起こしているという仮説が考えられており、様々な膜タンパク質がAβ受容体候補としてあげられている(「アミロイドーシス」の「細胞毒性」を参照)。


(編集コメント:Aβの毒性が最近言われております。その毒性と受容体などのメカニズムに関してはいかがでしょうか。)
(編集コメント:Aβの毒性が最近言われております。その毒性と受容体などのメカニズムに関してはいかがでしょうか。)
53

回編集