「Hodgkin-Huxley方程式」の版間の差分

提供:脳科学辞典
ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
13行目: 13行目:
== ''m''<sup>3</sup>''h''と''n''<sup>4</sup>  ==
== ''m''<sup>3</sup>''h''と''n''<sup>4</sup>  ==


活動電位の発生時に、Na<sup>+</sup>、K<sup>+</sup>、Cl<sup>-</sup>が個別に膜を透過することを見いだしたHodgkinとHuxleyは、voltage clamp法を用いてそれぞれのイオンの通りやすさ(コンダクタンス、抵抗の逆数)を測定した。<br>K<sup>+</sup>チャネルの場合、細胞膜を脱分極させるとK<sup>+</sup>チャネルは開いていき定常状態(steady state)に達する。 実験結果より、定常状態のコンダクタンスおよび定常状態に達するまでのコンダクタンス変化の速度定数が、電位によって一定であることが見いだされた。 2つの状態(OpenとClosed)があり状態間移行の速度定数が一定な系は、簡単な微分方程式を用いて表すことができる(two-stateモデル)。この考え方を適用したところ、4つの独立したゲートがあり、4つすべてが開いた時に電流が流れる、とすると実験データに合致することが示された。K<sup>+</sup>電流は、次の式で表される。
HodgkinとHuxleyは、voltage-clamp法を用いて活動電位に伴うNa<sup>+</sup>とK<sup>+</sup>のコンダクタンス(通りやすさ、抵抗の逆数)変化を定量的に解析し、Na<sup>+</sup>とK<sup>+</sup>には別々の通り道があることを示した。そしてNa<sup>+</sup>とK<sup>+</sup>のコンダクタンスがゲート(gate)により開閉されると考えた。


::<math> I_K = G_{K}^{max} n^4 (v-E_K)\, </math>
*Na<sup>+</sup>チャネルは3つの活性化ゲート''m''と不活性化ゲート''h''により開閉される。
*K<sup>+</sup>チャネルは4つの活性化ゲート''n''により開閉される。


''G''<sup>max</sup><sub>K</sub>最大コンダクタンス、''n''はゲートが開いている確率、''v''は電位、''E''<sub>K</sub>はK<sup>+</sup>の平行電位。
''m''、''h''、''n''は、ゲートが開いている確率を示す値で、単純なTwo-state&nbsp;modelに従う。''m''と''n''は、静止時に閉じており脱分極した時に開く。一方、''h''は静止時に開き脱分極時に閉じる。''m''''n''ではなく、''m''<sup>3</sup>および''n''<sup>4</sup>としたのは、主に電流の立ち上がりの形をよく再現するためである。


<br> Na<sup>+</sup>チャネルの場合は、脱分極するとチャネルは開くが、不活性化により閉じていく。開くゲートmだけでなく閉じるゲートhを考える事により、不活性化を説明する事が出来る。実験データより、3つの活性化ゲートと1つの不活性化ゲートが想定された。
電流はコンダクタンスと電圧に比例する(''I'' = ''GV''; Ohmの法則)。電圧の大きさは、細胞膜内外のイオン濃度差による電位(平衡電位)を補正しなくてはならない。 従って、 Na<sup>+</sup>とK<sup>+</sup>により担われる電流''I''<sub>Na</sub>と''I''<sub>K</sub>は、Na<sup>+</sup>とK<sup>+</sup>の最大コンダクタンスをそれぞれ ''G''<sup>max</sup><sub>Na</sub>、''G''<sup>max</sup><sub>K</sub> 、平衡電位を''E''<sub>Na</sub>、''E''<sub>K</sub>とすると、&nbsp;


::<math> I_{Na} = G_{Na}^{max} m^3h (v-E_{Na})\, </math>
::<math>I_{Na} = G^{max}_{Na} m^3 h (v-E_{Na})\, </math>
::<math>I_{K} = G^{max}_{K} n^3 (v-E_{K})\, </math>


''G''<sup>max</sup><sub>Na</sub>は最大コンダクタンス、''m''は活性化ゲートが開いている確率、''h''は不活性化ゲートが開いている確率、''E''<sub>Na</sub>はNa<sup>+</sup>の平行電位。
と表される。また主にクロライドイオン(Cl<sup>-</sup>)を通し静止電位保持に主要な役割を果たすリークチャネルは、コンダクタンスは電位に依存しないとして、


<br>  
::<math>I_{leak} = G_{leak}(v-E_{leak})\, </math>
 
と表される。
 
----
 
''m''、''h''、''n''はTwo-stateモデルに従う値である。 開く速度定数αと閉じる速度定数βはいずれも電位に依存する。 HodgkinとHuxleyは''m''、''h''、''n''のそれぞれについていろいろな電位での αとβの値を実験的に測定し、それらを便宜的に数式で表した。


電位に依存しないリークチャネルは、
::<math>\alpha_m = \frac{0.1(-V+25)}{\exp\left(\frac{-V+25}{10}\right)-1}</math>
::<math>\beta_m = 4\exp\left(\frac{-V}{18}\right)</math>


::<math> I_{l} = G_{l} (v-E_{l})\, </math>
::<math>\alpha_h = 0.07\exp\left(\frac{-V}{20}\right)</math>
::<math>\beta_h = \frac{1}{\exp\left(\frac{-V+30}{10}\right)+1}</math>


''G''<sub>l</sub>は最大コンダクタンス、''E''<sub>l</sub>はリーク電流の平行電位。
::<math>\alpha_n = \frac{0.01(-V+10)}{\exp\left(\frac{-V+10}{10}\right)-1}</math>  
::<math>\beta_n = 0.125\exp\left(\frac{-V}{80}\right)</math>


(未完成)
<br>


== 電位変化  ==
== 電位変化  ==
115行目: 126行目:
#Single-channel recording  
#Single-channel recording  
#Markovモデル  
#Markovモデル  
#Fractalモデルとの論争
#Fractalモデルとの論争<br>


== 現在におけるHHモデル  ==
== 現在におけるHHモデル  ==

2012年2月12日 (日) 15:15時点における版

Hodgkin-Huxley Equations

概略

Alan Lloyd Hodgkin (1914-1998)とAndrew Fielding Huxley (1917- )は、ともにイギリスの電気生理学者である。イカの巨大軸索における活動電位の発生と伝搬を測定し、その解析から現在の電気生理学の基礎となる概念を生み出すとともに、興奮性細胞(神経細胞、心筋、骨格筋)の電気現象を定量的に扱う道を開いた。HodgkinとHuxleyは、電気生理学の基礎を築いた功績により、同じく電気生理学者のJohn Carew Ecclesとともに、1963年のノーベル医学・生理学賞を受賞している。

HodgkinとHuxleyの業績の意義は次のように要約できる。

  1. 活動電位発生時に、ナトリウムイオン(Na+)とカリウムイオン(K+)が、細胞膜の別々の通路を通ることを示した。この発見はイオンチャネルの存在を予測するものであり、その後のイオンチャネル研究の源となった。なお当時の論文では、イオンチャネル・チャネルという用語は用いられておらず、コンダクタンスという用語が使用されている。
  2. Na+チャネル、K+チャネルが開閉する非線形な動態を微分方程式を含む数式で表した。これらの式はまとめてHodgkin-Huxley方程式と呼ばれる。
  3. Na+チャネル、K+チャネルおよびleakチャネルを示す数式を組み合わせ、活動電位の発生・伝播を数値的に再現した。現在行われている興奮性細胞の電位シミュレーションは、要素が増えるなどして複雑になっているが基本は変わらない。

m3hn4

HodgkinとHuxleyは、voltage-clamp法を用いて活動電位に伴うNa+とK+のコンダクタンス(通りやすさ、抵抗の逆数)変化を定量的に解析し、Na+とK+には別々の通り道があることを示した。そしてNa+とK+のコンダクタンスがゲート(gate)により開閉されると考えた。

  • Na+チャネルは3つの活性化ゲートmと不活性化ゲートhにより開閉される。
  • K+チャネルは4つの活性化ゲートnにより開閉される。

mhnは、ゲートが開いている確率を示す値で、単純なTwo-state modelに従う。mnは、静止時に閉じており脱分極した時に開く。一方、hは静止時に開き脱分極時に閉じる。mnではなく、m3およびn4としたのは、主に電流の立ち上がりの形をよく再現するためである。

電流はコンダクタンスと電圧に比例する(I = GV; Ohmの法則)。電圧の大きさは、細胞膜内外のイオン濃度差による電位(平衡電位)を補正しなくてはならない。 従って、 Na+とK+により担われる電流INaIKは、Na+とK+の最大コンダクタンスをそれぞれ GmaxNaGmaxK 、平衡電位をENaEKとすると、 

と表される。また主にクロライドイオン(Cl-)を通し静止電位保持に主要な役割を果たすリークチャネルは、コンダクタンスは電位に依存しないとして、

と表される。


mhnはTwo-stateモデルに従う値である。 開く速度定数αと閉じる速度定数βはいずれも電位に依存する。 HodgkinとHuxleyはmhnのそれぞれについていろいろな電位での αとβの値を実験的に測定し、それらを便宜的に数式で表した。


電位変化

(未完成)

Two-state model: 基礎的な考え方*

OpenとClosedの2つの状態がある系で、他の状態に移る率が一定の場合、次の性質がある。

  • 指数関数的に変化する
  • 近づく値、変化の速さは、初期条件に依存しない

以下は数式的な説明。


OpenとClosedの2つの状態がある系を考え、Openの状態にある確率をpとする。Closedの状態にある確立は, 1-pとなる。pは時刻tの関数であり、p(t)と表わすとする。

いま状態Closedから状態Openへ移っていく単位時間での割合(速度定数、rate constant)をαとし、状態Openから状態Closedへの速度定数をβとする。 p(t)の時間的経過を表わす微分方程式は、

と表される。αとβが定数であるとして、t =∞で定常状態になれば、

であるから、

となる。また微分方程式は解析的に解けて、

となる。 これらの式は次のことを示している。

  • p(t)は指数関数的にp(∞)に近づいていく。
  • その時定数(time constant)τは1/(α+β)である。
  • これらの値p、τは、初期値p(0)に依存しない。

さらに、

と表すとすると、

とより単純な形式となる。この関係は微分方程式の数値計算でよく用いられる。

電位固定法: 基礎となった技術*

Hodgkin-Huxley以前に、電気生理学の実験が行われていなかったわけではない。電流と電位変化に関する研究はかなり多く行われていた。しかしながら、細胞にはいろいろなイオンチャネルを通して電流が流れるため、細胞の電位vと外部から流す電流Iextの間の関係は、単純ではない。そこでHodgkinとHuxleyは、 voltage clamp(電位固定法)を用いて、コンダクタンスの変化を測定して解析した。 voltage clampは1940年代にアメリカの生物物理学者Kenneth Cole (1900 - 1984)らにより開発された。

以下は数式的な説明。


外部より電流Iextを流した場合、電位の変化は、次の式で示される。

この式から、Iextと電位との関係を理解する事は難しい。しかしvが一定となるような外部電流Iclampを流すと、左辺は0となるため、

という関係が得られる。もし溶液の組成を工夫しさらにチャネルのブロッカーなどを用いて、イオンチャネルAを流れる電流を単離して測れたとすると、

となる。これはOhmの法則である。ここでIclampは実験の測定値、vは実験の設定値、EAは実験条件で定まる定数なので、

の関係式を用いて、実験データよりイオンチャネルAのコンダクタンスGAを算出できることになる。

HHモデルに対する批判

  1. ゲート電流
  2. Single-channel recording
  3. Markovモデル
  4. Fractalモデルとの論争

現在におけるHHモデル

(未完成)

HH方程式を使ってみる

HH方程式の数値計算は、ノートパソコンでも十分行う事が出来る。


References

未完成