「カテニン」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
126行目: 126行目:


===構造===
===構造===
 &beta;&ndash;カテニンの一次構造についてはショウジョウバエのアルマジロで見つかった42アミノ酸残基の繰り返し配列(アルマジロ反復配列)が分子のN末端とC末端を除いた大部分を占める。この反復配列のほぼその全体にカドヘリンの細胞質領域の細胞膜より遠い部分が結合する。&beta;&ndash;カテニンタンパク質の立体構造はアルマジロ反復配列の領域だけでなく、[[ゼブラフィッシュ]]において全長で近年、解かれた<ref name=ref15><pubmed> 18334222 </pubmed></ref>
 &beta;&ndash;カテニンの一次構造についてはショウジョウバエのアルマジロで見つかった42アミノ酸残基の繰り返し配列(アルマジロ反復配列)が分子のN末端とC末端を除いた大部分を占める。&beta;&ndash;カテニンタンパク質の全長の立体構造は、近年、解かれた<ref name=ref15><pubmed> 18334222 </pubmed></ref>。この反復配列のほぼその全体にカドヘリンの細胞質領域の細胞膜より遠い部分が結合する。


 E&ndash;カドヘリンは、細胞質領域の細胞膜より遠い部分を介して、&beta;&ndash;カテニンのアルマジロ配列のほぼ全体に結合する<ref name=ref16><pubmed> 15112230 </pubmed></ref>。&alpha;&ndash;カテニンとは、そのアルマジロ反復配列のもっともN末よりの部分で結合する<ref name=ref16><pubmed> 15112230 </pubmed></ref>。他にも、アルマジロ反復配列領域では、[[転写因子]]であるTCF/LEFに結合することで、[[WNT|Wnt]]シグナル伝達における転写制御に、また、APC、Axinもその反復配列へ結合することで、&beta;&ndash;カテニンの分解に関与している。また、アルマジロ反復配列よりもN末側の領域と[[GSK3]]&beta;との結合も存在し、&beta;&ndash;カテニンの分解促進に重要であると考えられている。
 E&ndash;カドヘリンは、細胞質領域の細胞膜より遠い部分を介して、&beta;&ndash;カテニンのアルマジロ配列のほぼ全体に結合する<ref name=ref16><pubmed> 15112230 </pubmed></ref>。&alpha;&ndash;カテニンとは、そのアルマジロ反復配列のもっともN末よりの部分で結合する<ref name=ref16><pubmed> 15112230 </pubmed></ref>。他にも、アルマジロ反復配列領域では、[[転写因子]]である[[TCF]]/[[LEF]]に結合することで、[[WNT|Wnt]]シグナル伝達における転写制御に、また、[[APC]]、[[Axin]]もその反復配列へ結合することで、&beta;&ndash;カテニンの分解に関与している。また、アルマジロ反復配列よりもN末側の領域と[[GSK3β]]との結合も存在し、&beta;&ndash;カテニンの分解促進に重要であると考えられている。


 プラコグロビンは&beta;&ndash;カテニンの機能を相補しうるが、特徴としてそのN末端部分を介してデスモソームカドヘリンの細胞質部分に結合する。プラコグロビンも&beta;&ndash;カテニンと同様にその中央部分にアルマジロ反復配列をもち、その領域はデスモプラーキンと呼ばれる[[中間径フィラメント]]結合タンパク質との結合サイトをもつ。このデスモプラーキンとの結合はデスモソームと中間径線維との連結役として機能していると考えられている<ref name=ref17><pubmed> 17854763 </pubmed></ref>。
 プラコグロビンは&beta;&ndash;カテニンの機能を相補しうるが、特徴としてそのN末端部分を介して[[デスモソームカドヘリン]]の細胞質部分に結合する。プラコグロビンも&beta;&ndash;カテニンと同様にその中央部分にアルマジロ反復配列をもち、その領域は[[デスモプラーキン]]と呼ばれる[[中間径フィラメント]]結合タンパク質との結合サイトをもつ。このデスモプラーキンとの結合はデスモソームと中間径線維との連結役として機能していると考えられている<ref name=ref17><pubmed> 17854763 </pubmed></ref>。


===発現===
===発現===
 UniGeneのESTプロファイルによると、&beta;&ndash;カテニンは一般的に体全身の多くの組織において発現が認められているが、脂肪組織や副甲状腺、扁桃腺といって一部の組織では発現が確認されていない。細胞レベルにおいては、&beta;&ndash;カテニンは、&alpha;&ndash;カテニンと同様、細胞質タンパク質であるため、細胞質に一様な局在も示すが、カドヘリンを介した膜への局在が主である。[[Wnt]]シグナルの活性化状態では、&beta;&ndash;カテニンは核への局在が見られるようになる。
 &beta;&ndash;カテニンは一般的に体全身の多くの組織において発現が認められているが、[[wikipedia:ja:脂肪組織|脂肪組織]]や[[wikipedia:ja:副甲状腺|副甲状腺]]、扁桃腺といって一部の組織では発現が確認されていない。細胞レベルにおいては、&beta;&ndash;カテニンは、&alpha;&ndash;カテニンと同様、細胞質タンパク質であるため、細胞質に一様な局在も示すが、カドヘリンを介した膜への局在が主である。[[Wnt]]シグナルの活性化状態では、&beta;&ndash;カテニンは[[wikipedia:ja:核|核]]への局在が見られるようになる。


 プラコグロビン(&gamma;&ndash;カテニン)も、&beta;&ndash;カテニンと同様に多くの組織では発現が確認されているが、副腎や、耳、唾液腺、脾臓、へその緒、血管といった一部の組織には発現が確認されていない。細胞レベルでは、デスモソームへの局在が顕著である。
 プラコグロビン(&gamma;&ndash;カテニン)も、&beta;&ndash;カテニンと同様に多くの組織では発現が確認されているが、[[wikipedia:ja:副腎|副腎]]や、[[wikipedia:ja:耳|耳]]、[[wikipedia:ja:唾液腺|唾液腺]]、[[wikipedia:ja:脾臓|脾臓]]、[[wikipedia:ja:へその緒|へその緒]]、[[wikipedia:ja:血管|血管]]といった一部の組織には発現が確認されていない。細胞レベルでは、デスモソームへの局在が顕著である。


===機能===
===機能===
 &beta;&ndash;カテニンにはカドヘリン・カテニン複合体中のメンバーとしての細胞間接着への必須な役割と、Wnt/&beta;&ndash;カテニンシグナルの転写制御因子としての役割とがある。
 &beta;&ndash;カテニンにはカドヘリン・カテニン複合体中のメンバーとしての細胞間接着への必須な役割と、Wnt/&beta;&ndash;カテニンシグナルの転写制御因子としての役割とがある。


 細胞間接着における&beta;&ndash;カテニンの役割は、カドヘリンと&alpha;&ndash;カテニンとの連結にある<ref name=ref4><pubmed> 22617422 </pubmed></ref>。&alpha;&ndash;カテニンの結合は生化学的に確認されており、E&ndash;カドヘリンとともにアドへレンス・ジャンクションに局在するという細胞レベルの知見からも支持されている<ref name=ref16><pubmed> 15112230 </pubmed></ref>。F9細胞では&beta;&ndash;カテニンをノックアウトしてもプラコグロビン(&gamma;&ndash;カテニンとも呼ばれる)の発現が増加し、カドヘリンによる接着能は維持されるが、プラコグロビンもあわせてノックアウトするとその接着能は失われることが示されている<ref name=ref18><pubmed> 16357441 </pubmed></ref>。しかし、カドヘリンが発現していない細胞に、カドヘリンと&alpha;&ndash;カテニンとを融合したタンパク質を発現させれば、&beta;&ndash;カテニンが存在しなくてもカドヘリンの機能は発揮される<ref name=ref19><pubmed> 7929566 </pubmed></ref>。 これらは、細胞間接着においてプラコグロビンが&beta;&ndash;カテニンの機能を補完する役割を担っており、また&beta;&ndash;カテニンの機能は、&alpha;&ndash;カテニンをカドヘリンに結合させることであることを示している。細胞接着においてプラコグロビンの特徴はデスモソ-ムカドヘリンと[[細胞骨格]]の一つである中間径フィラメントの結合タンパク質であるプラモプラーキンの両方と同時に結合し、デスモソームの構造体として機能する点である。プラコグロビンのC末端領域の欠損した培養細胞では、細胞のラテラル面でのデスモソームの融合が見られ、結果としてデスモソームのサイズの増大が起こる。また、プラコグロビンは、アドへレンス・ジャンクションとデスモソーム間の分子のクロストークの制御に寄与していることが示唆されている。プラコグロビンのノックアウト[[マウス]]の心筋組織ではアドへレンス・ジャンクションの構成因子とデスモソームの構成因子とが混在してラテラル面に局在するようになってしまう<ref name=ref20><pubmed> 19262118 </pubmed></ref>。
 細胞間接着における&beta;&ndash;カテニンの役割は、カドヘリンと&alpha;&ndash;カテニンとの連結にある<ref name=ref4><pubmed> 22617422 </pubmed></ref>。&alpha;&ndash;カテニンの結合は生化学的に確認されており、E&ndash;カドヘリンとともにアドへレンス・ジャンクションに局在するという細胞レベルの知見からも支持されている<ref name=ref16><pubmed> 15112230 </pubmed></ref>。F9細胞では&beta;&ndash;カテニンをノックアウトしてもプラコグロビン(&gamma;&ndash;カテニンとも呼ばれる)の発現が増加し、カドヘリンによる接着能は維持されるが、プラコグロビンもあわせてノックアウトするとその接着能は失われることが示されている<ref name=ref18><pubmed> 16357441 </pubmed></ref>。しかし、カドヘリンが発現していない細胞に、カドヘリンと&alpha;&ndash;カテニンとを融合したタンパク質を発現させれば、&beta;&ndash;カテニンが存在しなくてもカドヘリンの機能は発揮される<ref name=ref19><pubmed> 7929566 </pubmed></ref>。これらは、細胞間接着においてプラコグロビンが&beta;&ndash;カテニンの機能を補完する役割を担っており、また&beta;&ndash;カテニンの機能は、&alpha;&ndash;カテニンをカドヘリンに結合させることであることを示している。


 &beta;&ndash;カテニンは、発生における遺伝子発現の制御にも重要な役割がある。Wntシグナルがない状態では、細胞質の&beta;&ndash;カテニン(カドヘリン・カテニン複合体中のものとは別である)はGSK3&beta;によりリン酸化され、それを標的としたユビキチン化により、[[プロテアソーム]]によるタンパク質分解をうけることで、その量が低く保たれている。WntシグナルがやってくればGSK3&beta;によるリン酸化が抑制され、&beta;&ndash;カテニンは核内へ移行し、TCF/LEFと複合体を形成し、[[細胞周期]]関連因子や体軸決定因子などの標的遺伝子を活性化する<ref name=ref4><pubmed> 22617422 </pubmed></ref>。これは、ウニの発生を初めとし無脊椎動物、脊椎動物両方において報告されている<ref name=ref4><pubmed> 22617422 </pubmed></ref>。神経系においても、シナプス形成と可塑性や神経幹細胞の未分化状態の維持など多岐にわたる寄与が報告されている<ref>'''Elkouby, Y. M., Frank, D. '''<br>Wnt/beta-Catenin Signaling in Vertebrate Posterior Neural Development<br>''Developmental Biology (San Rafael (CA))'':2010</ref><ref name=ref21><pubmed> 23377854 </pubmed></ref>。また、プロコグロビンも先に挙げたTCF/LEFと結合でき、核内への局在がみられる状況では、Wnt/&beta;&ndash;カテニンシグナル伝達の抑制が同時にみられていることから、実際にはプロコグロビンは&beta;&ndash;カテニンと相互排他的にTCF/LEFへ結合しうり、その結果としてWnt/&beta;&ndash;カテニンシグナル伝達の制御を実現していると解釈できる。
 細胞接着においてプラコグロビンはデスモソ-ムカドヘリンと細胞骨格の一つである中間径フィラメントの結合タンパク質である[[プラモプラーキン]]の両方と同時に結合し、デスモソームの構造体として機能する。プラコグロビンのC末端領域の欠損した培養細胞では、細胞のラテラル面でのデスモソームの融合が見られ、結果としてデスモソームのサイズの増大が起こる。また、プラコグロビンは、アドへレンス・ジャンクションとデスモソーム間の分子のクロストークの制御に寄与していることが示唆されている。プラコグロビンの[[ノックアウトマウス]]の[[wikipedia:ja:心筋|心筋]]組織ではアドへレンス・ジャンクションの構成因子とデスモソームの構成因子とが混在してラテラル面に局在するようになってしまう<ref name=ref20><pubmed> 19262118 </pubmed></ref>。
 
 &beta;&ndash;カテニンは、発生における遺伝子発現の制御にも重要な役割がある。Wntシグナルがない状態では、細胞質の&beta;&ndash;カテニン(カドヘリン・カテニン複合体中のものとは別である)はGSK3&beta;によりリン酸化され、それを標的とした[[ユビキチン化]]により、プロテアソームによるタンパク質分解をうけることで、その量が低く保たれている。WntシグナルがやってくればGSK3&beta;による[[リン酸化]]が抑制され、&beta;&ndash;カテニンは核内へ移行し、TCF/LEFと複合体を形成し、[[細胞周期]]関連因子や体軸決定因子などの標的遺伝子を活性化する<ref name=ref4><pubmed> 22617422 </pubmed></ref>。これは、[[wikipedia:ja:ウニ|ウニ]]の発生を初めとし[[wikipedia:ja:無脊椎動物|無脊椎動物]]、[[wikipedia:ja:脊椎動物|脊椎動物]]両方において報告されている<ref name=ref4><pubmed> 22617422 </pubmed></ref>
 
 神経系においても、[[シナプス形成]]と[[可塑性]]や[[神経幹細胞]]の未分化状態の維持など多岐にわたる寄与が報告されている<ref>'''Elkouby, Y. M., Frank, D. '''<br>Wnt/beta-Catenin Signaling in Vertebrate Posterior Neural Development<br>''Developmental Biology (San Rafael (CA))'':2010</ref><ref name=ref21><pubmed> 23377854 </pubmed></ref>。また、プロコグロビンも先に挙げたTCF/LEFと結合でき、核内への局在がみられる状況では、Wnt/&beta;&ndash;カテニンシグナル伝達の抑制が同時にみられていることから、実際にはプロコグロビンは&beta;&ndash;カテニンと相互排他的にTCF/LEFへ結合しうり、その結果としてWnt/&beta;&ndash;カテニンシグナル伝達の制御を実現していると解釈できる。


==p120&ndash;カテニン==
==p120&ndash;カテニン==
 p120&ndash;カテニンと&delta;&ndash;カテニンがこのグループに属する(p120&ndash;カテニンファミリーにはその他複数のタンパク質があるが、ここでは比較的研究歴史の長い2つのカテニンについてのみ紹介する。それ以外のタンパク質については総説<ref name=ref5><pubmed> 17175391 </pubmed></ref><ref name=ref22><pubmed> 15489912 </pubmed></ref>を参照していただきたい。)。([[PSD-95]]やGRIPとも相互作用すると思います。これらの点についても御願い致します)
 p120&ndash;カテニンと&delta;&ndash;カテニンがこのグループに属する(p120&ndash;カテニンファミリーにはその他複数のタンパク質があるが、ここでは比較的研究歴史の長い2つのカテニンについてのみ紹介する。それ以外のタンパク質については総説<ref name=ref5><pubmed> 17175391 </pubmed></ref><ref name=ref22><pubmed> 15489912 </pubmed></ref>を参照していただきたい。)。


===構造===
===構造===