「空間記憶」の版間の差分
Tomokouekita (トーク | 投稿記録) 細編集の要約なし |
Tomokouekita (トーク | 投稿記録) 細編集の要約なし |
||
21行目: | 21行目: | ||
=== NMDA受容体と空間記憶 === | === NMDA受容体と空間記憶 === | ||
空間記憶におけるグルタミン酸NMDA受体の機能は、拮抗性AP5や非拮抗性MK-801などのNMDA受容体阻害薬を用いて検討されてきた。AP5をラットの脳室内に慢性投与すると、水迷路場所課題の獲得が困難になるが、水迷路での視覚弁別課題の獲得には障害が生じなかった(Butcher, Hamberger, & Morris, 1991; Morris, 1989; Morris, Anderson, Lynch, & Baudry, 1986)。MK-801の腹腔内投与もまた、水迷路場所課題の獲得を妨げたが、手掛り課題の獲得は妨げなかった(Robinson, Crooks, Shinkman, & Gallagher, 1989; Whishaw & Auer, 1989)。報酬課題である放射状迷路の場所課題の学習に対してもNMDA受容体阻害薬の効果が確認された(Ward, Mason, & Abraham, 1990)。このようにNMDA阻害薬が空間記憶を必要とする課題の学習を選択的に妨げることから、空間記憶の形成にはNMDA受容体が必要であることが示唆された。 | 空間記憶におけるグルタミン酸NMDA受体の機能は、拮抗性AP5や非拮抗性MK-801などのNMDA受容体阻害薬を用いて検討されてきた。AP5をラットの脳室内に慢性投与すると、水迷路場所課題の獲得が困難になるが、水迷路での視覚弁別課題の獲得には障害が生じなかった(Butcher, Hamberger, & Morris, 1991; Morris, 1989; Morris, Anderson, Lynch, & Baudry, 1986)。MK-801の腹腔内投与もまた、水迷路場所課題の獲得を妨げたが、手掛り課題の獲得は妨げなかった(Robinson, Crooks, Shinkman, & Gallagher, 1989; Whishaw & Auer, 1989)。報酬課題である放射状迷路の場所課題の学習に対してもNMDA受容体阻害薬の効果が確認された(Ward, Mason, & Abraham, 1990)。このようにNMDA阻害薬が空間記憶を必要とする課題の学習を選択的に妨げることから、空間記憶の形成にはNMDA受容体が必要であることが示唆された。 | ||
ところで、記憶には、記銘(acquisition)と保持(retention)と想起(retrieval)の三つのプロセスがある。空間記憶について、NMDA受容体の阻害効果は記銘時に限定され、保持および想起を妨げることがないことが研究者間で一致して報告されている。具体的には、水迷路(Robinson et al., 1989: Heale & Harley, 1990)や放射状迷路(Shapiro & Caramanos, 1990)の場所課題の獲得時にAP5やMK-801を投与すると学習障害が生じるが、課題の獲得後に投与しても遂行は妨げられないという結果が得られている。海馬を完全に破壊すると、障害は記憶の全てのプロセスに及ぶことから、記憶形成時に限定された働きは、NMDA受容体の機能的特徴であるといえる。そして、この特徴はNMDA受容体が長期増強の誘発時にのみ必要とされるという分子レベルのプロセスと対応している。後に、NMDA受容体の阻害効果が阻害薬投与以前の課題経験(Bannerman , Good, Butcher,Ramsay & Morris, 1995)や運動経験(Cain et al., 1996, Saucier & Cain, 1995) | ところで、記憶には、記銘(acquisition)と保持(retention)と想起(retrieval)の三つのプロセスがある。空間記憶について、NMDA受容体の阻害効果は記銘時に限定され、保持および想起を妨げることがないことが研究者間で一致して報告されている。具体的には、水迷路(Robinson et al., 1989: Heale & Harley, 1990)や放射状迷路(Shapiro & Caramanos, 1990)の場所課題の獲得時にAP5やMK-801を投与すると学習障害が生じるが、課題の獲得後に投与しても遂行は妨げられないという結果が得られている。海馬を完全に破壊すると、障害は記憶の全てのプロセスに及ぶことから、記憶形成時に限定された働きは、NMDA受容体の機能的特徴であるといえる。そして、この特徴はNMDA受容体が長期増強の誘発時にのみ必要とされるという分子レベルのプロセスと対応している。後に、NMDA受容体の阻害効果が阻害薬投与以前の課題経験(Bannerman , Good, Butcher,Ramsay & Morris, 1995)や運動経験(Cain et al., 1996, Saucier & Cain, 1995)に依存しており、必ずしも空間記憶を妨げるものではないという反証が報告された。この不一致に関して、空間と課題の経験を操作した複数の条件でNMDA受容体の阻害効果が再検討された。NMDA受容体阻害薬が課題の経験に関わらず、新奇な環境において空間記憶障害を引き起こすことが明らかにされ、NMDA受容体が空間記憶(空間表象)の形成に必要とされることが明らかになった(Uekita & Okaichi, 2005)。より最近では、獲得後のNMDA受容体阻害が空間記憶の長期保持を向上させることが報告されている(篠原・畑, 2014)。 |
2014年5月8日 (木) 16:56時点における版
英語名:spatial memory
動物が餌の隠し場所や巣穴の位置を記憶して再び訪れたり、危険な場所を避けるといった行動には、目的地や自分の現在地点を特定する認知能力が必要である。このような空間や場所に関する認知を支えるのが空間記憶である。実験動物として用いられるラットやマウスは優れた空間記憶をもつことから、動物の記憶研究の中で空間記憶は頻繁に取り上げられ、その神経システムの解明が進んでいる。
認知地図
Tolman (1948)は、動物の空間行動を「認知地図」という概念によって説明した。これは、動物が空間内を移動するとき、その空間の地図用のイメージを描いて、餌探し行動や危険回避行動をするという考えである。認知地図に基づく行動は、環境内にある複数の刺激の空間的関係性と、複数の刺激と出来事との関係性の構築によって実行される。認知地図以前の単純なS-R理論では、刺激を与えられても行動が実行されない場合や行動しても刺激が与えられない場合には学習が生じないと考えられてきた。しかし、台車に載せての受動的な移動(McNamara, Long & Wike, 1956)や、ゴール地点において報酬を与えられない移動(Tolman & Honzik, 1930)によっても潜在的な学習が生じているという実験的証拠が得られ、それまでの単純なS-R理論で説明することができなかった空間行動は認知地図の概念によって説明された。
空間記憶の神経基盤
空間記憶と海馬
海馬を含む側頭葉内側部の切除手術を受けたH.M.が宣言記憶の障害を示すという報告(Scoville & Millner, 1957)以来、齧歯類を対象とした海馬損傷研究が盛んに行われた。この流れの中で、Tolmanの認知地図の概念はO'Keefe & Nadel (1978)によって海馬認知地図仮説へと発展し、海馬が空間認知の神経基盤であると考えられた。海馬認知地図仮説の中で、O'KeefeらはLocaleシステムとTaxonシステムという2つの記憶システムを提案した。Localeシステムは環境の中で自分の位置を特定する、いわゆる認知地図を利用した空間行動を支えるシステムであり、Taxonシステムは特定の手掛りに対する接近行動と回避行動の強化によって駆動されるシステムである。O'Keefe & Conway (1980)は、これらのシステムと海馬の関係について検討した。この実験では、Localeシステムを要する課題として①十字型迷路の周辺に分散された複数の手掛りから報酬位置を特定する課題と、Taxonシステムを要する課題として②複数手掛りが報酬走路近くにまとめて配置された課題が設けられ、各システムに及ぼす海馬損傷が検討された。海馬損傷により①の課題の成績が著しく悪化したが、②の課題の成績は手術前よりもむしろ改善された。これにより、Localeシステムに基づく行動は海馬依存的であるが、Taxonシステムに基づく行動は海馬非依存的であることが明らかになった。同様の結論がMorris水迷路を用いたMorris, Garrud, Rawlins & O'Keefe(1982)においても報告されている。プール内の一か所の水面下に隠れたプラットホームの位置をプール周囲の複数の刺激の位置との関係で記憶させる場所課題の学習には海馬損傷の効果があった。しかし、目印刺激のある見える逃避台への接近行動を測定する手掛り課題の学習には海馬損傷の効果がなかった。この効果の分離は、O'Keefe & Conway (1980)による海馬依存的なLocaleシステムと海馬非依存的Taxonシステムの分離に対応するものと考えられる。
場所細胞の発見
海馬が空間認知の神経基盤であることは、海馬の神経細胞の活動を記録する電気生理学的研究によっても支持された。その先駆的研究は、O'Keefe & Dostrovsky (1971)によるユニット記録研究である。彼らは自由探索中のラットの海馬神経細胞の活動を記録し、ラットが空間の特定の領域を横切るのに同期して高頻度で発火する細胞の存在を報告した。これがいわゆる場所細胞である。その後、Wilson & McNaughton (1993)により、同時に100個以上の神経細胞を記録することのできる多電極記録法が開発され、ラットが特定の位置に来ると複数の神経細胞が同時発火する相関的発火が生じることも明らかになった。また、Lever, Wills, Cacucci, Burgess, & O'Keefe (2002)は、円形広場と正方形の広場の中でラットが探索行動をしている間に、CA1野の場所細胞がどのように場所フィールドを形成していくかを長期間にわたり観察した。探索1日目には、円形広場でも正方形の広場でも共通した場所フィールドが形成されるが、5日目には1日目の場所フィールドが崩れ、一方の空間を探索しているときに発火していた場所細胞が他方の空間では発火しなくなったり、それぞれの空間で異なる場所フィールドが形成された。探索21目には、環境の違いに応じた場所フィールドの違いが顕著になり、ラットをホームケージに戻し数週間の遅延を置いたのちにもこの傾向が維持された。このことは、CA1野の神経細胞が地理的な特徴に基づいて空間を弁別し、そのイメージを長期間記憶していることを示唆した。
海馬のシナプス可塑性
長期増強と空間記憶
NMDA受容体と空間記憶
空間記憶におけるグルタミン酸NMDA受体の機能は、拮抗性AP5や非拮抗性MK-801などのNMDA受容体阻害薬を用いて検討されてきた。AP5をラットの脳室内に慢性投与すると、水迷路場所課題の獲得が困難になるが、水迷路での視覚弁別課題の獲得には障害が生じなかった(Butcher, Hamberger, & Morris, 1991; Morris, 1989; Morris, Anderson, Lynch, & Baudry, 1986)。MK-801の腹腔内投与もまた、水迷路場所課題の獲得を妨げたが、手掛り課題の獲得は妨げなかった(Robinson, Crooks, Shinkman, & Gallagher, 1989; Whishaw & Auer, 1989)。報酬課題である放射状迷路の場所課題の学習に対してもNMDA受容体阻害薬の効果が確認された(Ward, Mason, & Abraham, 1990)。このようにNMDA阻害薬が空間記憶を必要とする課題の学習を選択的に妨げることから、空間記憶の形成にはNMDA受容体が必要であることが示唆された。 ところで、記憶には、記銘(acquisition)と保持(retention)と想起(retrieval)の三つのプロセスがある。空間記憶について、NMDA受容体の阻害効果は記銘時に限定され、保持および想起を妨げることがないことが研究者間で一致して報告されている。具体的には、水迷路(Robinson et al., 1989: Heale & Harley, 1990)や放射状迷路(Shapiro & Caramanos, 1990)の場所課題の獲得時にAP5やMK-801を投与すると学習障害が生じるが、課題の獲得後に投与しても遂行は妨げられないという結果が得られている。海馬を完全に破壊すると、障害は記憶の全てのプロセスに及ぶことから、記憶形成時に限定された働きは、NMDA受容体の機能的特徴であるといえる。そして、この特徴はNMDA受容体が長期増強の誘発時にのみ必要とされるという分子レベルのプロセスと対応している。後に、NMDA受容体の阻害効果が阻害薬投与以前の課題経験(Bannerman , Good, Butcher,Ramsay & Morris, 1995)や運動経験(Cain et al., 1996, Saucier & Cain, 1995)に依存しており、必ずしも空間記憶を妨げるものではないという反証が報告された。この不一致に関して、空間と課題の経験を操作した複数の条件でNMDA受容体の阻害効果が再検討された。NMDA受容体阻害薬が課題の経験に関わらず、新奇な環境において空間記憶障害を引き起こすことが明らかにされ、NMDA受容体が空間記憶(空間表象)の形成に必要とされることが明らかになった(Uekita & Okaichi, 2005)。より最近では、獲得後のNMDA受容体阻害が空間記憶の長期保持を向上させることが報告されている(篠原・畑, 2014)。