「抑制性アミノ酸」の版間の差分

提供:脳科学辞典
ナビゲーションに移動 検索に移動
(Tfuruyaトーク)による編集をWikiSysopによる直前の版へ差し戻しました)
編集の要約なし
 
(3人の利用者による、間の18版が非表示)
1行目: 1行目:
{{chembox
<div align="right">  
| verifiedrevid = 476992474
<font size="+1">江藤 圭</font><br>
| Name=&gamma;-Aminobutyric acid
''University of North Carolina at Chapel Hill, Department of Pharmacology''<br>
|  ImageFile = Eto_fig_1_GABA.gif
<font size="+1">[http://researchmap.jp/read0192091 石橋 仁]</font><br>
|  ImageSize = 230px
''北里大学医療衛生学部生理学研究室''<br>
|  ImageName = Simplified structural formula
<font size="+1">鍋倉 淳一</font><br>
|  ImageFile1 = GABA-3D-balls.png
''自然科学研究機構生理学研究所''<br>
|  ImageSize1 = 230
DOI:<selfdoi /> 原稿受付日:2012年12月25日 原稿完成日:2014年3月13日<br>
|  ImageName1 = Ball-and-stick model
担当編集委員:[http://researchmap.jp/michisukeyuzaki 柚崎 通介](慶應義塾大学 医学部生理学)<br>
|  IUPACName = 4-aminobutanoic acid
</div>
|  OtherNames=
|Section1= {{Chembox Identifiers
|  UNII_Ref = {{fdacite|correct|FDA}}
| UNII = 2ACZ6IPC6I
| ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 96
| KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG = D00058
| InChI = 1/C4H9NO2/c5-3-1-2-4(6)7/h1-3,5H2,(H,6,7)
| InChIKey = BTCSSZJGUNDROE-UHFFFAOYAC
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C4H9NO2/c5-3-1-2-4(6)7/h1-3,5H2,(H,6,7)
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = BTCSSZJGUNDROE-UHFFFAOYSA-N
| CASNo_Ref = {{cascite|correct|CAS}}
| CASNo=56-12-2
|  PubChem=119
| IUPHAR_ligand = 1067
|  ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 116
|  DrugBank_Ref = {{drugbankcite|correct|drugbank}}
| DrugBank = DB02530
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 16865
| NeuroLex = {{GABA}}
| NeuroLexID = sao229636300
| SMILES=C(CC(=O)O)CN
|  MeSHName=gamma-Aminobutyric+Acid
 
  }}
|Section2= {{Chembox Properties
|  Formula=C<sub>4</sub>H<sub>9</sub>NO<sub>2</sub>
|  MolarMass=103.12 g/mol
|  Appearance=white microcrystalline powder
|  Density=1.11 g/mL
|  MeltingPtC=203.7
|  BoilingPtC=247.9
|  pKa=4.23 (carboxyl), 10.43 (amino)<ref>Dawson, R.M.C., et al., ''Data for Biochemical Research'', Oxford, Clarendon Press, 1959.</ref>
|  Solubility= soluble
  }}
|Section3= {{Chembox Hazards
|  MainHazards= Irritant, Harmful
|  FlashPt=
|  Autoignition=
  }}
}}
 
{{chembox
| Watchedfields = changed
| verifiedrevid = 464190930
| Reference=<ref>{{Merck11th|4386}}.</ref>
| ImageFile1 = Eto_fig_3_glycine.gif
|  ImageSize1 = 230px
| ImageFile2 = Glycine-3D-balls.png
|  ImageSize2 = 230px
| IUPACName = Glycine
| OtherNames = Aminoethanoic acid <br /> Aminoacetic acid
| Section1 = {{Chembox Identifiers
|  Abbreviations = '''Gly''', '''G'''
|  UNII_Ref = {{fdacite|correct|FDA}}
| UNII = TE7660XO1C
| ChEMBL_Ref = {{ebicite|correct|EBI}}
| ChEMBL = 773
| KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG = D00011
| InChI = 1/C2H5NO2/c3-1-2(4)5/h1,3H2,(H,4,5)
| InChIKey = DHMQDGOQFOQNFH-UHFFFAOYAW
| StdInChI_Ref = {{stdinchicite|correct|chemspider}}
| StdInChI = 1S/C2H5NO2/c3-1-2(4)5/h1,3H2,(H,4,5)
| StdInChIKey_Ref = {{stdinchicite|correct|chemspider}}
| StdInChIKey = DHMQDGOQFOQNFH-UHFFFAOYSA-N
| CASNo = 56-40-6
| CASNo_Ref = {{cascite|correct|CAS}}
| EC-number = 200-272-2
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 730
| PubChem = 750
| IUPHAR_ligand = 727
| DrugBank_Ref = {{drugbankcite|correct|drugbank}}
| DrugBank = DB00145
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 15428
| SMILES = C(C(=O)O)N
| ATCCode_prefix = B05
| ATCCode_suffix = CX03
}}
| Section2 = {{Chembox Properties
|  C=2 | H=5 | N=1 | O=2
|  MolarMass = 75.07
|  Appearance = white solid
|  Density = 1.607 g/cm<sup>3</sup>
|  MeltingPt = 233 °C (decomposition)
|  Solubility = 24.99 g/100 mL (25 °C)<ref>http://prowl.rockefeller.edu/aainfo/solub.htm</ref>
|  SolubleOther = soluble in [[ethanol]], [[pyridine]] <br> insoluble in [[ether]]
|  pKa = 2.34 (carboxyl), 9.6 (amino)<ref>Dawson, R.M.C., et al., ''Data for Biochemical Research'', Oxford, Clarendon Press, 1959.</ref>
  }}
| Section3 = {{Chembox Hazards
|  EUIndex =
|  FlashPt =
|  Autoignition =
|  LD50 = 2600 mg/kg (mouse, oral)
  }}
}}


英語名:inhibitory amino acids 独:inhibitorische Aminosäuren, hemmende Aminosäuren 仏:acide aminé inhibiteur
英語名:inhibitory amino acids 独:inhibitorische Aminosäuren, hemmende Aminosäuren 仏:acide aminé inhibiteur


 抑制性アミノ酸は、中枢神経系の抑制性シナプス伝達を担うアミノ酸であり、ガンマ-アミノ酪酸(γ-aminobutyric acid; GABA)とグリシンがある。
{{box|text= 抑制性アミノ酸とは、中枢神経系の抑制性シナプス伝達を担うアミノ酸であり、[[GABA]] ([[γ-アミノ酪酸]]; [[γ-aminobutyric acid]])と[[グリシン]]がある。}}


== GABA ==
== GABA ==


 GABAは、[[wikipedia:ja:イモ|イモ]]などの植物に含まれるアミノ酸として古くから知られていたが、1960年代になって、[[wikipedia:ja:甲殻類|甲殻類]][[神経筋接合部]]で抑制性に働くことが示された。今日では、[[wikipedia:ja:哺乳動物|哺乳動物]]の[[中枢神経系]]において、GABAが[[抑制性伝達物質]]であることは広く認識されているが、GABAが抑制性神経伝達物質として認識されたのは 1970年代になってからである。もちろん、GABAは中枢神経系以外にも、さまざまな非神経組織に存在して、その組織特有の生理機能を有していると考えられている。
 GABAは、[[wikipedia:ja:イモ|イモ]]などの植物に含まれるアミノ酸として古くから知られていたが、1950年代になって、林髞らにより脳にGABAを注入すると抑制作用を示すことが明らかにされ<ref name=ref4><pubmed>13590228</pubmed></ref>、1966年には大塚正徳らが、ザリガニの[[神経筋接合部]]においてGABAが刺激に応じて放出されることを証明し、GABAの[[抑制性伝達物質]]としての同定に寄与した<ref name=ref5><pubmed>5230136</pubmed></ref>。その後、1967年にKrnjevicとSchwartzがGABAが抑制性神経伝達物質であると証明し<ref name=ref6><pubmed>6031164</pubmed></ref>、今日では、[[wikipedia:ja:哺乳動物|哺乳動物]]の[[中枢神経系]]において、GABAが抑制性伝達物質であることは広く認識されている。もちろん、GABAは中枢神経系以外にも、さまざまな非神経組織に存在して、その組織特有の生理機能を有していると考えられている。
 
===生合成===
 
 GABAの生合成に関しては、脳内では主に、[[グルタミン酸デカルボキシラーゼ]](glutamic acid decarboxylase; GAD)による脱炭酸によって、[[グルタミン酸]]から産生される。このGADには、 分子量が 65300と66600の2つのアイソフォーム([[GAD65]]と[[GAD67]])が知られており、どちらも同一の抑制性神経細胞に存在するが、GAD67が[[細胞質]]全体に存在するのに対してGAD65は[[神経終末]]部に豊富に存在することから、GAD65が抑制性シナプス伝達を担うGABA合成に関与すると考えられている。


 GABAの合成に関しては、[[wikipedia:ja:TCAサイクル|TCAサイクル]]の[[wikipedia:ja:α-ケトグルタル酸|α-ケトグルタル酸]]からグルタミン酸を経由してGABAが合成される経路がある。また、神経終末部では、細胞外から[[グルタミン酸輸送体]]により、グルタミン酸が取り込まれてGAD65によりGABAが合成される。GABAの分解過程では、GABAは[[GABA transaminase]]により[[コハク酸セミアルデヒド]]となり、その後酸化されて[[コハク酸]]となりTCAサイクルに入る。
''詳細は[[GABA]]の項目参照。''
<gallery widths=200px heights=200px>
image:Eto_fig_2_GABAsynthesis.jpg|'''図 GABAの合成・代謝経路'''
</gallery>
===機能===
 
 GABAは、[[GABAA受容体|GABA<sub>A</sub>受容体]]、[[GABAB受容体|GABA<sub>B</sub>受容体]]、[[GABAC受容体|GABA<sub>C</sub>受容体]]の3種の受容体に作用することによってその生理機能を発揮する。GABAAとGABAB受容体は中枢神経系に広く分布し、GABAC受容体は成熟[[wikipedia:ja:脊椎動物|脊椎動物]]ではほぼ[[網膜]]のみに限局して分布する。GABAAとGABAC受容体は[[イオンチャネル型受容体]]で、Cl-を透過させる。GABAA受容体はαサブユニット、βサブユニット、γサブユニット、δサブユニット、εサブユニットなどによって構成される五量体であるが、脳部位によってサブユニットの発現が異なっている。また、構成サブユニットの違いにより薬物に対する感受性も異なる。GABAC受容体は ρサブユニットで形成される五量体であり、GABAA受容体を抑制する[[ビククリン]]に感受性がないなど、GABAA受容体とは薬物感受性がかなり異なっている。
 
 GABAAおよびGABAC受容体を介した抑制効果は、神経細胞内のCl-濃度により変化する。通常、成熟期の神経細胞内Cl-濃度は低く保たれており、Cl-の[[平衡電位]]は[[静止電位]]よりも[[過分極]]側にあるため、GABAA受容体およびGABAC受容体の応答は過分極性である。しかし、発達期においてGABAは[[脱分極]]作用(興奮性作用)を示すことがある。これは、細胞内からCl-を排出する役割を担うトランスポーターの機能や発現が、成熟期の神経細胞と異なるためである。
 
 GABAB受容体は、GABAB1およびGABAB2サブユニットからなる[[代謝型受容体]]で、GABAはGABAB1受容体に結合し、GABAB2受容体は[[Gi/oタンパク質]]を活性化する。GABAB受容体の生理機能としては、[[K+チャネル]]の活性化、[[Ca2+チャネル]]の抑制、[[アデニル酸シクラーゼ]]の抑制などの作用がある。


== グリシン ==
== グリシン ==


 グリシンはタンパク質を構成するアミノ酸の中でも最も単純な構造を持っており、不斉炭素を持たないため、D体や L 体といった[[wikipedia:ja:立体異性体|立体異性体]]が存在しない。中枢神経系においては、GABAとともに抑制性シナプス伝達を担うが、[[NMDA型グルタミン酸受容体]]に結合してその機能を上昇させることから、興奮性伝達にも重要な役割を果たしている。グリシンは、主に脊髄や脳幹においてGABAとともに抑制性神経伝達物質として働くが、[[大脳皮質]]などの上位中枢では抑制性シナプス伝達はGABAが担っている。
 グリシンはタンパク質を構成するアミノ酸の中でも最も単純な構造を持っており、不斉炭素を持たないため、D体や L 体といった[[wikipedia:ja:立体異性体|立体異性体]]が存在しない。中枢神経系においては、GABAとともに抑制性シナプス伝達を担う。グリシンは、シナプス外に存在する[[NMDA型グルタミン酸受容体]]に結合してその機能を調節し<ref name=ref18><pubmed>    10049997</pubmed></ref>、NMDA型グルタミン酸受容体を介した神経細胞死にも関与する<ref name=ref19><pubmed>17698151</pubmed></ref>。また、グリシンは髄鞘に存在するGluN1とGluN3から成るNMDA受容体にも結合する<ref name=ref20><pubmed>20739572</pubmed></ref>。グリシンは、主に脊髄や脳幹においてGABAとともに抑制性神経伝達物質として働くが、[[大脳皮質]]などの上位中枢では抑制性シナプス伝達はGABAが担っている。
===生合成===
 グリシンは、食事から摂取する他、生体内でもいくつかの経路で合成される。生体内では、
#[[wikipedia:ja:グリオキシル酸|グリオキシル酸]]とグルタミン酸から[[wikipedia:ja:グリシントランスアミナーゼ|グリシントランスアミナーゼ]]の作用により合成、
#グルタミン酸デカルボキシラーゼ、[[wikipedia:ja:セリンヒドロキシメチルトランスフェラーゼ|セリンヒドロキシメチルトランスフェラーゼ]]によって葉酸依存性にセリンから合成
#[[wikipedia:ja:スレオニン|スレオニン]](threonine)の[[wikipedia:ja:異化|異化]]
#[[wikipedia:ja:コリン|コリン]]の代謝


 によってグリシンが生成する。
''詳細は[[グリシン]]の項目参照。''
(編集コメント:箇条書きにいたしましたが、2を著者の方に再確認をお願いいたします)
 
===機能===
 抑制性伝達物質としてグリシンが機能するためには、シナプス前神経終末部の[[シナプス小胞]]にグリシンが取り込まれて、神経終末部から放出される必要がある。グリシンを放出する抑制性シナプス前神経終末部には、[[グリシントランスポーター2型]]([[GlyT2]])が発現しており、これによってグリシンが神経終末部内へ取り込まれることにより、グリシン濃度が高まる。神経終末部に取り込まれたグリシンは、[[小胞型抑制性アミノ酸運搬体]]([[VIAAT]]、[[VGAT]]とも呼ばれる)によりシナプス小胞内へ充填され、神経終末部から放出される。小胞型抑制性アミノ酸運搬体はグリシンだけでなくGABAも輸送するので、単一神経終末部から GABAとグリシンが共放出(co-release)されることがある。
 
 グリシンは[[グリシン受容体]]に作用することで抑制性作用を示す。この作用は[[ストリキニーネ]]で拮抗される。NMDA型グルタミン酸受容体のグリシン結合部位はストリキニーネ感受性がない。グリシン受容体はGABA<sub>A</sub>受容体と同様Cl-を通すイオンチャネル型受容体で、αサブユニットとβサブユニットから成る五量体である。グリシン受容体は[[ゲフェリン]]という[[足場タンパク質]]によりシナプス部位に維持される。


==関連項目==
==関連項目==
*[[&gamma;-アミノ酪酸]]
*[[GABA]]
*[[グリシン]]
*[[グリシン]]
*[[GABA受容体]]
(他にございましたらご指摘下さい)


== 参考文献 ==
== 参考文献 ==
<references />
<references />
(執筆者:江藤圭、石橋仁、鍋倉淳一 担当編集者:柚崎通介)

2015年3月8日 (日) 11:32時点における最新版

江藤 圭
University of North Carolina at Chapel Hill, Department of Pharmacology
石橋 仁
北里大学医療衛生学部生理学研究室
鍋倉 淳一
自然科学研究機構生理学研究所
DOI:10.14931/bsd.3042 原稿受付日:2012年12月25日 原稿完成日:2014年3月13日
担当編集委員:柚崎 通介(慶應義塾大学 医学部生理学)

英語名:inhibitory amino acids 独:inhibitorische Aminosäuren, hemmende Aminosäuren 仏:acide aminé inhibiteur

 抑制性アミノ酸とは、中枢神経系の抑制性シナプス伝達を担うアミノ酸であり、GABA (γ-アミノ酪酸; γ-aminobutyric acid)とグリシンがある。

GABA

 GABAは、イモなどの植物に含まれるアミノ酸として古くから知られていたが、1950年代になって、林髞らにより脳にGABAを注入すると抑制作用を示すことが明らかにされ[1]、1966年には大塚正徳らが、ザリガニの神経筋接合部においてGABAが刺激に応じて放出されることを証明し、GABAの抑制性伝達物質としての同定に寄与した[2]。その後、1967年にKrnjevicとSchwartzがGABAが抑制性神経伝達物質であると証明し[3]、今日では、哺乳動物中枢神経系において、GABAが抑制性伝達物質であることは広く認識されている。もちろん、GABAは中枢神経系以外にも、さまざまな非神経組織に存在して、その組織特有の生理機能を有していると考えられている。

詳細はGABAの項目参照。

グリシン

 グリシンはタンパク質を構成するアミノ酸の中でも最も単純な構造を持っており、不斉炭素を持たないため、D体や L 体といった立体異性体が存在しない。中枢神経系においては、GABAとともに抑制性シナプス伝達を担う。グリシンは、シナプス外に存在するNMDA型グルタミン酸受容体に結合してその機能を調節し[4]、NMDA型グルタミン酸受容体を介した神経細胞死にも関与する[5]。また、グリシンは髄鞘に存在するGluN1とGluN3から成るNMDA受容体にも結合する[6]。グリシンは、主に脊髄や脳幹においてGABAとともに抑制性神経伝達物質として働くが、大脳皮質などの上位中枢では抑制性シナプス伝達はGABAが担っている。

詳細はグリシンの項目参照。

関連項目

参考文献

  1. HAYASHI, T. (1958).
    Inhibition and excitation due to gamma-aminobutyric acid in the central nervous system. Nature, 182(4642), 1076-7. [PubMed:13590228] [WorldCat] [DOI]
  2. Otsuka, M., Iversen, L.L., Hall, Z.W., & Kravitz, E.A. (1966).
    Release of gamma-aminobutyric acid from inhibitory nerves of lobster. Proceedings of the National Academy of Sciences of the United States of America, 56(4), 1110-5. [PubMed:5230136] [PMC] [WorldCat] [DOI]
  3. Krnjević, K., & Schwartz, S. (1967).
    The action of gamma-aminobutyric acid on cortical neurones. Experimental brain research, 3(4), 320-36. [PubMed:6031164] [WorldCat] [DOI]
  4. Dingledine, R., Borges, K., Bowie, D., & Traynelis, S.F. (1999).
    The glutamate receptor ion channels. Pharmacological reviews, 51(1), 7-61. [PubMed:10049997] [WorldCat]
  5. Katsuki, H., Watanabe, Y., Fujimoto, S., Kume, T., & Akaike, A. (2007).
    Contribution of endogenous glycine and d-serine to excitotoxic and ischemic cell death in rat cerebrocortical slice cultures. Life sciences, 81(9), 740-9. [PubMed:17698151] [WorldCat] [DOI]
  6. Piña-Crespo, J.C., Talantova, M., Micu, I., States, B., Chen, H.S., Tu, S., ..., & Lipton, S.A. (2010).
    Excitatory glycine responses of CNS myelin mediated by NR1/NR3 "NMDA" receptor subunits. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(34), 11501-5. [PubMed:20739572] [PMC] [WorldCat] [DOI]