「ミエリン関連糖タンパク質」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
1行目: 1行目:
MAG: Myelin associated glycoprotein  
MAG: Myelin associated glycoprotein  


同義語:
重要な関連語:Nogo、Nogoレセプター、ミエリンインヒビター、ミエリンタンパク(MBP、PLP、P0)




11行目: 14行目:
== 遺伝子クローニングからノックアウトマウスの作製へ ==
== 遺伝子クローニングからノックアウトマウスの作製へ ==
   
   
[[Image:脳科学辞典01.jpg|thumb|right|図1 ミエリン形成された神経軸索の模式図]]
[[Image:脳科学辞典01.jpg|thumb|right||250px|図1 ミエリン形成された神経軸索の模式図]]


 1987年に3つのグループがMAGのcDNAクローニングを行った。少し遅れて日本でも宮武らのグループがヒトのcDNAのクローニングを報告した。 1994年にノックアウトマウスが2つのグループによって報告され、in vitroの結果から予測されたようなドラスティックな異常はみられず、ミエリン形成がほとんど正常におこっていたことから、研究者を非常にがっかりさせた。しかしながら、そのマウスでは脱髄のあとの回復が遅れていたことから、MAGはおそらく神経再生においてのミエリン形成には重要なのではないかと考えられた<ref><pubmed>7519026</pubmed></ref><ref><pubmed>7516497</pubmed></ref>。また、MAGノックアウトマウスにおいては別の分子がその機能をコンペンセイトしているのではないかと考えられた。事実、MAGとガラクト脂質合成酵素(MAGに結合するシアル酸の合成酵素)のダブルノックアウトマウスではノードとパラノードの形成はおこるものの、その構造の維持がおこらないことから、MAGはこのようなミエリン化された神経の構造の維持に重要であると考えられている(図1)<ref><pubmed>11827985</pubmed></ref>。
 1987年に3つのグループがMAGのcDNAクローニングを行った。少し遅れて日本でも宮武らのグループがヒトのcDNAのクローニングを報告した。 1994年にノックアウトマウスが2つのグループによって報告され、in vitroの結果から予測されたようなドラスティックな異常はみられず、ミエリン形成がほとんど正常におこっていたことから、研究者を非常にがっかりさせた。しかしながら、そのマウスでは脱髄のあとの回復が遅れていたことから、MAGはおそらく神経再生においてのミエリン形成には重要なのではないかと考えられた<ref><pubmed>7519026</pubmed></ref><ref><pubmed>7516497</pubmed></ref>。また、MAGノックアウトマウスにおいては別の分子がその機能をコンペンセイトしているのではないかと考えられた。事実、MAGとガラクト脂質合成酵素(MAGに結合するシアル酸の合成酵素)のダブルノックアウトマウスではノードとパラノードの形成はおこるものの、その構造の維持がおこらないことから、MAGはこのようなミエリン化された神経の構造の維持に重要であると考えられている(図1)<ref><pubmed>11827985</pubmed></ref>。
24行目: 27行目:
== 実はNogoレセプターのリガンドだった ==
== 実はNogoレセプターのリガンドだった ==


[[Image:脳科学辞典02.jpg|thumb|right|図2 MAGとそのレセプターによるシグナル系路]]
[[Image:脳科学辞典02.jpg|thumb|right|250px|図2 MAGとそのレセプターによるシグナル系路]]


 Schwabのグループはその後も地道に生化学的に彼らのミエリンインヒビターの精製と同定を進めていた。その彼らの発表した部分アミノ酸配列をもとに2000年に3つのグループがこの分子の同定を発表し、Nogoと呼ばれたこの分子はMAGとは構造的に異なるものであった。その後、2001年にNogoのクローニングを行った3つのグループの1つであるSteven StrittmatterのグループによってNogoレセプターが同定された。その後、2002年に再び驚くべき報告がなされた。StrittmatterのグループとFilbinのグループが実はMAGもNogoレセプターのリガンドであることを明らかにしたのである<ref><pubmed>12160746</pubmed></ref><ref><pubmed>12089450</pubmed></ref>。 また、山下らはMAGの神経成長阻害の活性はp75を介しておこることを示していたが、その数ヶ月後に実はNogoレセプターはp75と結合しMAGを含むNogoリガンドはp75を通じて神経成長阻害を示すことが別の2つのグループによって明らかにされた<ref><pubmed>12426574</pubmed></ref><ref><pubmed>12422217</pubmed></ref>。つまり、ミエリンアソシエイティドインヒビターには幾つかのものがあり、MAGもその一つで、Nogoレセプターとp75を介して神経成長を抑制するということである(図2)。このMAGの活性とシグナル系路が正常のミエリン形成等においてどのような機能を果たしているかについてははっきりしていない。Nogoを含むミエリンインヒビターについてはその項を参照されたい。  
 Schwabのグループはその後も地道に生化学的に彼らのミエリンインヒビターの精製と同定を進めていた。その彼らの発表した部分アミノ酸配列をもとに2000年に3つのグループがこの分子の同定を発表し、Nogoと呼ばれたこの分子はMAGとは構造的に異なるものであった。その後、2001年にNogoのクローニングを行った3つのグループの1つであるSteven StrittmatterのグループによってNogoレセプターが同定された。その後、2002年に再び驚くべき報告がなされた。StrittmatterのグループとFilbinのグループが実はMAGもNogoレセプターのリガンドであることを明らかにしたのである<ref><pubmed>12160746</pubmed></ref><ref><pubmed>12089450</pubmed></ref>。 また、山下らはMAGの神経成長阻害の活性はp75を介しておこることを示していたが、その数ヶ月後に実はNogoレセプターはp75と結合しMAGを含むNogoリガンドはp75を通じて神経成長阻害を示すことが別の2つのグループによって明らかにされた<ref><pubmed>12426574</pubmed></ref><ref><pubmed>12422217</pubmed></ref>。つまり、ミエリンアソシエイティドインヒビターには幾つかのものがあり、MAGもその一つで、Nogoレセプターとp75を介して神経成長を抑制するということである(図2)。このMAGの活性とシグナル系路が正常のミエリン形成等においてどのような機能を果たしているかについてははっきりしていない。Nogoを含むミエリンインヒビターについてはその項を参照されたい。  
33行目: 36行目:
 MAGに対する抗体(特にIgM)は末梢性のニューロパチーに関与していることが知られている<ref><pubmed>20842571</pubmed></ref>。これはMAGに抗原性の高い糖鎖が付着していることによるのかもしれない。抗体の存在は病態のマーカーともなりうるし、また、治療の対象ともなると考えられる。  
 MAGに対する抗体(特にIgM)は末梢性のニューロパチーに関与していることが知られている<ref><pubmed>20842571</pubmed></ref>。これはMAGに抗原性の高い糖鎖が付着していることによるのかもしれない。抗体の存在は病態のマーカーともなりうるし、また、治療の対象ともなると考えられる。  


同義語:


重要な関連語:Nogo、Nogoレセプター、ミエリンインヒビター、ミエリンタンパク(MBP、PLP、P0)
== 参考文献 ==


<references />  
<references />