「体温調節の神経回路」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
7行目: 7行目:
== 体温調節反応の種類  ==
== 体温調節反応の種類  ==


 体温の調節に関わる反応は、自律性体温調節反応と行動性体温調節反応に分類される。自律性体温調節反応には、体内で熱の産生を行う反応と環境中への体熱の放散を調節する反応がある。体内の熱は、様々な化学反応や筋運動の副産物として産生されるが、それに加えて、体温調節を目的とした積極的な熱の産生が、主に褐色脂肪組織と骨格筋で行われる。褐色脂肪組織は交感神経系による強い支配を受け、代謝性(非ふるえ)熱産生が起こる。骨格筋では、体性運動神経を介したふるえ熱産生が起こる。<br> 体熱の放散の様式には、蒸散性熱放散と非蒸散性熱放散の2種類が存在する。蒸散性熱放散は、体表面の水分が蒸発する際に体熱を気化熱として奪うことを利用して熱の放散をうながす反応である。暑熱環境では、人や馬は汗腺より分泌した汗を蒸発させることで熱放散をうながす。ラットやマウスは唾液の分泌量を増やし、それを体表面に塗布する。犬はパンティング(あえぎ)を行うことで、口腔内や気道表面の水分の蒸発量を増加させる。<br> 非蒸散性熱放散は、水分の蒸発を伴わず、体表面から環境中への熱の伝導や放射による熱放散反応である。非蒸散性熱放散において重要な働きをする器官の一つとしては、皮膚の血管が挙げられる。皮膚血管は主に交感神経による調節を受け、神経終末から放出されるノルアドレナリンの作用によって血管の収縮が起こる。皮膚血管の収縮は皮膚血流の低下につながるので、体表面からの熱の放散が抑制される。一方、交感神経活動の低下は皮膚血管の平滑筋の弛緩につながり、血管径が拡張するので、皮膚血流の増加による体熱の放散促進につながる。また、人間の皮膚血管には、積極的に拡張させる神経も存在することが知られているが、放出する神経伝達物質など、その実体はよく分かっていない。寒冷環境では鳥肌が立つことがあるが、これも非蒸散性熱放散反応の一種である。猿や犬など、長い体毛を持つ動物では、立毛筋を収縮させ、毛を立てることで、体毛によって構成される皮膚の外側の空気の層の厚くし、体熱の放散を減少させる。人間の皮膚の表面には体毛が少ないので、立毛させることによる効果はほとんどないが、進化上の名残として反応が残っているのである。<br> 行動性体温調節は、体温の維持を目的とし、意志に基づいて意識的に行う行動である。例えば、体温の維持に適した温度環境に移動するという行動だけではなく、「寒いのでコートを羽織る」、「暑いので冷房のスイッチを入れる」などの行動も含まれる。こうした行動の基盤には、暑さ寒さに起因する情動が関与すると考えられるが、その中枢神経回路に関する仕組みはほとんど分かっていない。
 体温の調節に関わる反応は、自律性体温調節反応と行動性体温調節反応に分類される。自律性体温調節反応には、体内で熱の産生を行う反応と環境中への体熱の放散を調節する反応がある。体内の熱は、様々な化学反応や筋運動の副産物として産生されるが、それに加えて、体温調節を目的とした積極的な熱の産生が、主に褐色脂肪組織と骨格筋で行われる。褐色脂肪組織は交感神経系による強い支配を受け、代謝性(非ふるえ)熱産生が起こる。骨格筋では、体性運動神経を介したふるえ熱産生が起こる。


== 自律性体温調節の指令を行う脳の神経回路  ==
 体熱の放散の様式には、蒸散性熱放散と非蒸散性熱放散の2種類が存在する。蒸散性熱放散は、体表面の水分が蒸発する際に体熱を気化熱として奪うことを利用して熱の放散をうながす反応である。暑熱環境では、人や馬は汗腺より分泌した汗を蒸発させることで熱放散をうながす。ラットやマウスは唾液の分泌量を増やし、それを体表面に塗布する。犬はパンティング(あえぎ)を行うことで、口腔内や気道表面の水分の蒸発量を増加させる。


 自律性体温調節反応のうち、褐色脂肪組織熱産生や皮膚血管収縮は脊髄中間外側核からの交感神経出力によって惹起され、ふるえ熱産生は脊髄前角からの体性運動出力を介して惹起される。こうした脊髄からの出力は、延髄の淡蒼縫線核(raphe pallidus nucleus)を中心とした領域に分布するプレモーターニューロンによって制御される。このプレモーターニューロンのうち、褐色脂肪組織熱産生や皮膚血管収縮の指令を伝達する交感神経プレモーターニューロンは、小胞性グルタミン酸トランスポーター3(VGLUT3)を発現し、脊髄中間外側核においてグルタミン酸を放出すると考えられている。この交感神経プレモーターニューロン群のうち、約20%はセロトニンも含有する。また、GABAを含有するものも報告されている。こうしたプレモーターニューロンには、上位の脳領域からの体温調節指令を受け取り、統合した信号を脊髄の出力システムに伝達する役割がある。<br> プレモーターニューロンに興奮性の入力を行う脳領域としては、視床下部背内側部(dorsomedial hypothalamus)が知られている。一方、プレモーターニューロンに抑制性の入力を行う脳領域はいくつか存在するが、体温調節性の制御に関わる抑制性入力は、視索前野から行われると考えられている。<br> 視索前野には体温調節中枢が存在し、自律性体温調節反応の惹起を指令する司令塔として機能する。視索前野には下行性投射を行うニューロンが存在し、視床下部背内側部や淡蒼縫線核へtonicな抑制性の入力を行うことで、これらの領域のニューロン群の活動を制御する。したがって、視索前野からの下行性抑制のトーンが最終的な体温調節性の交感神経や運動神経の出力レベルを決定している。<br> 例えば、暑熱環境では、視索前野からの下行性抑制が強まり、視床下部背内側部や淡蒼縫線核のニューロンの活動が低下する。したがって、交感神経や体性運動神経の出力が小さくなるため、熱産生が抑制され、皮膚血管が拡張することにより体熱の放散が促進される。一方、寒冷環境では、視索前野からの下行性抑制が弱まることで、視床下部背内側部や淡蒼縫線核のニューロンが脱抑制される。したがって、こうしたニューロンからの興奮性信号が交感神経や運動神経の出力を増強する。したがって、熱産生が惹起され、皮膚血管が収縮することにより体熱の放散が抑制される。
 非蒸散性熱放散は、水分の蒸発を伴わず、体表面から環境中への熱の伝導や放射による熱放散反応である。非蒸散性熱放散において重要な働きをする器官の一つとしては、皮膚の血管が挙げられる。皮膚血管は主に交感神経による調節を受け、神経終末から放出されるノルアドレナリンの作用によって血管の収縮が起こる。皮膚血管の収縮は皮膚血流の低下につながるので、体表面からの熱の放散が抑制される。一方、交感神経活動の低下は皮膚血管の平滑筋の弛緩につながり、血管径が拡張するので、皮膚血流の増加による体熱の放散促進につながる。また、人間の皮膚血管には、積極的に拡張させる神経も存在することが知られているが、放出する神経伝達物質など、その実体はよく分かっていない。寒冷環境では鳥肌が立つことがあるが、これも非蒸散性熱放散反応の一種である。猿や犬など、長い体毛を持つ動物では、立毛筋を収縮させ、毛を立てることで、体毛によって構成される皮膚の外側の空気の層の厚くし、体熱の放散を減少させる。人間の皮膚の表面には体毛が少ないので、立毛させることによる効果はほとんどないが、進化上の名残として反応が残っているのである。
 
 行動性体温調節は、体温の維持を目的とし、意志に基づいて意識的に行う行動である。例えば、体温の維持に適した温度環境に移動するという行動だけではなく、「寒いのでコートを羽織る」、「暑いので冷房のスイッチを入れる」などの行動も含まれる。こうした行動の基盤には、暑さ寒さに起因する情動が関与すると考えられるが、その中枢神経回路に関する仕組みはほとんど分かっていない。
 
== 自律性体温調節の指令を行う神経回路  ==
 
 自律性体温調節反応のうち、褐色脂肪組織熱産生や皮膚血管収縮は脊髄中間外側核からの交感神経出力によって惹起され、ふるえ熱産生は脊髄前角からの体性運動出力を介して惹起される。こうした脊髄からの出力は、延髄の淡蒼縫線核(raphe pallidus nucleus)を中心とした領域に分布するプレモーターニューロンによって制御される。このプレモーターニューロンのうち、褐色脂肪組織熱産生や皮膚血管収縮の指令を伝達する交感神経プレモーターニューロンは、小胞性グルタミン酸トランスポーター3(VGLUT3)を発現し、脊髄中間外側核においてグルタミン酸を放出すると考えられている。この交感神経プレモーターニューロン群のうち、約20%はセロトニンも含有する。また、GABAを含有するものも報告されている。こうしたプレモーターニューロンには、上位の脳領域からの体温調節指令を受け取り、統合した信号を脊髄の出力システムに伝達する役割がある。
 
 プレモーターニューロンに興奮性の入力を行う脳領域としては、視床下部背内側部(dorsomedial hypothalamus)が知られている。一方、プレモーターニューロンに抑制性の入力を行う脳領域はいくつか存在するが、体温調節性の制御に関わる抑制性入力は、視索前野から行われると考えられている。視索前野には体温調節中枢が存在し、自律性体温調節反応の惹起を指令する司令塔として機能する。視索前野には下行性投射を行うニューロンが存在し、視床下部背内側部や淡蒼縫線核へtonicな抑制性の入力を行うことで、これらの領域のニューロン群の活動を制御する。したがって、視索前野からの下行性抑制のトーンが最終的な体温調節性の交感神経や運動神経の出力レベルを決定している。
 
例えば、暑熱環境では、視索前野からの下行性抑制が強まり、視床下部背内側部や淡蒼縫線核のニューロンの活動が低下する。したがって、交感神経や体性運動神経の出力が小さくなるため、熱産生が抑制され、皮膚血管が拡張することにより体熱の放散が促進される。一方、寒冷環境では、視索前野からの下行性抑制が弱まることで、視床下部背内側部や淡蒼縫線核のニューロンが脱抑制される。したがって、こうしたニューロンからの興奮性信号が交感神経や運動神経の出力を増強する。したがって、熱産生が惹起され、皮膚血管が収縮することにより体熱の放散が抑制される。


== 感染性発熱の神経回路  ==
== 感染性発熱の神経回路  ==
19行目: 29行目:
== 体温調節のための温度感覚  ==
== 体温調節のための温度感覚  ==


 体温を生理的に適正な温度域に維持するには、中枢が体温(深部体温)を感知することが必要である。深部体温を感知するニューロンとしては、視索前野や前視床下部(anterior hypothalamus)に存在する温度感受性ニューロンが知られており、その多くは、脳組織温度が上昇することによって発火頻度が上昇する温ニューロン(warm-sensitive neuron)である。視索前野や前視床下部の組織温度は、体深部から循環してくる血液の温度の影響を受けるため、深部体温の変動に連動して変化する。そして実験的には、視索前野の局所を冷却すると熱産生が惹起され、加温すると皮膚血管の拡張が起こることが知られている。したがって、脳組織温度に依存した温ニューロンの活動レベルが体温調節反応の出力を決定するのではないかと考えられている。これによって、体温が至適温度域から逸脱したことを感知し、適正な方向へ戻すための反応を惹起するのである。このような体温調節様式をフィードバック制御という。<br> 体温の維持には、深部体温の感知だけでなく、皮膚の知覚神経末端に存在する温度受容器による環境温度の感知も必要である。環境温度が変化した時には、皮膚でそれをいち早く感知し、体温調節中枢へ伝達することによって、深部体温が影響を受けて変動してしまう前に適切な体温調節反応を惹起することが可能になる。このような体温調節様式をフィードフォワード制御という。皮膚の温度受容器で感知した温度情報は、脊髄後角(spinal dorsal horn)を経て、橋の外側結合腕傍核(lateral parabrachial nucleus)へ伝達され、そこから視索前野へと入力される。この経路では、温覚と冷覚を中継するニューロン群は別に存在し、独立して視索前野へ入力される。例えば、外側結合腕傍核では、温覚を中継するニューロンは背側部に局在し、冷覚を中継するものは外側部に局在する。  
 体温を生理的に適正な温度域に維持するには、中枢が体温(深部体温)を感知することが必要である。深部体温を感知するニューロンとしては、視索前野や前視床下部(anterior hypothalamus)に存在する温度感受性ニューロンが知られており、その多くは、脳組織温度が上昇することによって発火頻度が上昇する温ニューロン(warm-sensitive neuron)である。視索前野や前視床下部の組織温度は、体深部から循環してくる血液の温度の影響を受けるため、深部体温の変動に連動して変化する。そして実験的には、視索前野の局所を冷却すると熱産生が惹起され、加温すると皮膚血管の拡張が起こることが知られている。したがって、脳組織温度に依存した温ニューロンの活動レベルが体温調節反応の出力を決定するのではないかと考えられている。これによって、体温が至適温度域から逸脱したことを感知し、適正な方向へ戻すための反応を惹起するのである。このような体温調節様式をフィードバック制御という。
 
 体温の維持には、深部体温の感知だけでなく、皮膚の知覚神経末端に存在する温度受容器による環境温度の感知も必要である。環境温度が変化した時には、皮膚でそれをいち早く感知し、体温調節中枢へ伝達することによって、深部体温が影響を受けて変動してしまう前に適切な体温調節反応を惹起することが可能になる。このような体温調節様式をフィードフォワード制御という。皮膚の温度受容器で感知した温度情報は、脊髄後角(spinal dorsal horn)を経て、橋の外側結合腕傍核(lateral parabrachial nucleus)へ伝達され、そこから視索前野へと入力される。この経路では、温覚と冷覚を中継するニューロン群は別に存在し、独立して視索前野へ入力される。例えば、外側結合腕傍核では、温覚を中継するニューロンは背側部に局在し、冷覚を中継するものは外側部に局在する。  


== セットポイント仮説  ==
== セットポイント仮説  ==


 長らくの間、体温のセットポイントが中枢において設定されており、深部体温が設定温度から逸脱した場合には設定値へ戻すようなフィードバック反応が惹起される、というセットポイント仮説が提唱されてきた。しかし、研究が進むにつれ、体温調節は深部体温だけでなく皮膚で感知した環境温度にも基づいて適切な反応が惹起されること、また、末梢の体温調節効果器の種類によって反応が惹起される温度(深部体温あるいは皮膚温度)の閾値が異なることなどが分かり、従来のセットポイント仮説のような単純なメカニズムではないことが明らかとなってきた。<br> 現在では、深部体温と末梢温度(主に皮膚温度)の情報が体温調節中枢で統合され、それに基づいて適切な体温調節反応(効果器)の種類と強度が決定され、出力されるという考え方が主流である。こうした温度情報の統合と反応出力の決定に関わる中枢神経回路メカニズムについては分かっていないことが多い。しかし、視索前野から視床下部背内側部や淡蒼縫線核へ下行性抑制を行う投射ニューロンの発火活動が体温調節反応の出力強度を決定しているという考え方から、この投射ニューロンが、温ニューロンとしての機能や、またEP3受容体を発現して感染時にプロスタグランジンE<sub>2</sub>を受容する機能を有する可能性があるが、証明は行われていない。<br>
 長らくの間、体温のセットポイントが中枢において設定されており、深部体温が設定温度から逸脱した場合には設定値へ戻すようなフィードバック反応が惹起される、というセットポイント仮説が提唱されてきた。しかし、研究が進むにつれ、体温調節は深部体温だけでなく皮膚で感知した環境温度にも基づいて適切な反応が惹起されること、また、末梢の体温調節効果器の種類によって反応が惹起される温度(深部体温あるいは皮膚温度)の閾値が異なることなどが分かり、従来のセットポイント仮説のような単純なメカニズムではないことが明らかとなってきた。
 
 現在では、深部体温と末梢温度(主に皮膚温度)の情報が体温調節中枢で統合され、それに基づいて適切な体温調節反応(効果器)の種類と強度が決定され、出力されるという考え方が主流である。こうした温度情報の統合と反応出力の決定に関わる中枢神経回路メカニズムについては分かっていないことが多い。しかし、視索前野から視床下部背内側部や淡蒼縫線核へ下行性抑制を行う投射ニューロンの発火活動が体温調節反応の出力強度を決定しているという考え方から、この投射ニューロンが、温ニューロンとしての機能や、またEP3受容体を発現して感染時にプロスタグランジンE<sub>2</sub>を受容する機能を有する可能性があるが、証明は行われていない。
44

回編集