「小脳によるタイミング制御」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
22行目: 22行目:
 [[時間長弁別課題]](図1C)は、持続の長さの異なる2種類の音を間隔をおいて提示し、その持続時間の違いを問う課題であり、小脳の[[認知]]機能を調べるものである。音声言語医学の分野では、小脳症状の検査として、[[Voice Onset Time]] (VOT)の生成と認識の課題が利用される(図1D)。「バ」と「パ」等の[[wikipedia:ja:無声破裂音|無声破裂音]]と[[wikipedia:ja:有声破裂音|有声破裂音]]では、第一フォルマントの立ち上がりのタイミングに数十ミリ秒の違いしかない。その発音には[[wikipedia:ja:構音筋|構音筋]]の微妙な協調運動を必要するため、小脳疾患の患者では発音を仕分けるのが困難になる。またその聞き分けは、時間長弁別課題と同様に小脳の認知機能に関係する。
 [[時間長弁別課題]](図1C)は、持続の長さの異なる2種類の音を間隔をおいて提示し、その持続時間の違いを問う課題であり、小脳の[[認知]]機能を調べるものである。音声言語医学の分野では、小脳症状の検査として、[[Voice Onset Time]] (VOT)の生成と認識の課題が利用される(図1D)。「バ」と「パ」等の[[wikipedia:ja:無声破裂音|無声破裂音]]と[[wikipedia:ja:有声破裂音|有声破裂音]]では、第一フォルマントの立ち上がりのタイミングに数十ミリ秒の違いしかない。その発音には[[wikipedia:ja:構音筋|構音筋]]の微妙な協調運動を必要するため、小脳疾患の患者では発音を仕分けるのが困難になる。またその聞き分けは、時間長弁別課題と同様に小脳の認知機能に関係する。


== 遅延型瞬目反射の条件付け ==
== 遅延型瞬目反射条件づけ ==


[[Image:Yamazaki Nagao 図2.jpg|thumb|250px|<b>図2. 遅延型瞬目反射の条件付け</b><br />(A) は条件付けのスキーム、(B)は関与する神経伝達の経路。]]  
[[Image:Yamazaki Nagao 図2.jpg|thumb|250px|<b>図2. 遅延型瞬目反射条件づけ</b><br />(A) は条件づけのスキーム、(B)は関与する神経伝達の経路。]]  


 小脳のタイミング制御機構を実験的に検討するのに、[[瞬目反射の条件付け]]のパラダイム(図 2A)が用いられる<ref name="ref2"><pubmed>14657256</pubmed></ref>。遅延型瞬目反射の条件付けとは、[[無条件反射]](Unconditioned Stimulus, US)である瞬きを引き起こす[[無条件刺激]] (眼球へのエアパフ刺激)と、音やフラッシュ光による[[条件刺激]](Conditioned Stimulus, CS)を組み合わせて提示することを繰り返すと、CSだけで瞬きをするという[[条件反応]](Conditioned Response, CR)が生じる運動学習である。この反射の目的は、CSが提示されるタイミングを予測し、その時点で眼を閉じることを学習することで、侵害刺激であるUSを回避することにある。瞬きは刺激開始直後ではなく、エアパフのタイミングに同期して起こることが重要である。
 小脳のタイミング制御機構を実験的に検討するのに、[[瞬目反射条件づけ]]のパラダイム(図 2A)が用いられる<ref name="ref2"><pubmed>14657256</pubmed></ref>。遅延型瞬目反射条件づけとは、[[無条件反射]](Unconditioned Stimulus, US)である瞬きを引き起こす[[無条件刺激]] (眼球へのエアパフ刺激)と、音やフラッシュ光による[[条件刺激]](Conditioned Stimulus, CS)を組み合わせて提示することを繰り返すと、CSだけで瞬きをするという[[条件反応]](Conditioned Response, CR)が生じる運動学習である。この反射の目的は、CSが提示されるタイミングを予測し、その時点で眼を閉じることを学習することで、侵害刺激であるUSを回避することにある。瞬きは刺激開始直後ではなく、エアパフのタイミングに同期して起こることが重要である。


 図2Bに遅延型瞬目反射の条件付けに関係する神経回路を示す。エアパフの情報(US)は、眼球の知覚を司る[[三叉神経核]]から、[[下オリーブ核]]を経由し、[[登上線維]]によって[[小脳皮質]]の第VI[[小脳半球]]の[[プルキンエ細胞]]とその出力先である小脳[[中位核]]と[[歯状核]]に、それぞれ伝えられる。音に関する情報(CS)は、[[蝸牛神経核]]から[[橋核]]を経て、[[苔状線維]]により、同じく第VI小脳半球の[[顆粒細胞]]に送られるとともに、その側枝により、第VI小脳半球のプルキンエ細胞の出力先の小脳中位核と歯状核にも送られる。従って、小脳皮質と小脳核にはそれぞれ苔状線維と登上線維の入力によりCSとUSの情報が伝えられることになる。小脳核の出力は[[赤核]]を経て、瞬きを引き起こす筋群を駆動する[[顔面神経]]の[[運動核]]と[[外転神経核]]に伝えられる。
 図2Bに遅延型瞬目反射条件づけに関係する神経回路を示す。エアパフの情報(US)は、眼球の知覚を司る[[三叉神経核]]から、[[下オリーブ核]]を経由し、[[登上線維]]によって[[小脳皮質]]の第VI[[小脳半球]]の[[プルキンエ細胞]]とその出力先である小脳[[中位核]]と[[歯状核]]に、それぞれ伝えられる。音に関する情報(CS)は、[[蝸牛神経核]]から[[橋核]]を経て、[[苔状線維]]により、同じく第VI小脳半球の[[顆粒細胞]]に送られるとともに、その側枝により、第VI小脳半球のプルキンエ細胞の出力先の小脳中位核と歯状核にも送られる。従って、小脳皮質と小脳核にはそれぞれ苔状線維と登上線維の入力によりCSとUSの情報が伝えられることになる。小脳核の出力は[[赤核]]を経て、瞬きを引き起こす筋群を駆動する[[顔面神経]]の[[運動核]]と[[外転神経核]]に伝えられる。


 遅延型瞬目反射の条件付けに小脳を含む神経回路が重要な役割を演じていることが、破壊実験や薬物を用いた不活化の実験、神経活動の記録実験の結果により示唆されている。条件付けを行なう前に小脳皮質を破壊すると、いくらトレーニングを行なってもCSに同期した正確なCRが生じない。また条件付けが生じた後に小脳皮質を破壊すると、CSのタイミングに同期したCRが消失する。このことは小脳皮質がCSの時間情報を正確に反映する条件付けに必要であり、CSとCRの連合には主に小脳核が関与していることを示唆する。
 遅延型瞬目反射条件づけに小脳を含む神経回路が重要な役割を演じていることが、破壊実験や薬物を用いた不活化の実験、神経活動の記録実験の結果により示唆されている。条件づけを行なう前に小脳皮質を破壊すると、いくらトレーニングを行なってもCSに同期した正確なCRが生じない。また条件づけが生じた後に小脳皮質を破壊すると、CSのタイミングに同期したCRが消失する。このことは小脳皮質がCSの時間情報を正確に反映する条件づけに必要であり、CSとCRの連合には主に小脳核が関与していることを示唆する。


 小脳皮質の[[平行線維]]―プルキンエ細胞間[[シナプス]]には、登上線維入力によって[[長期抑圧]](long-term depression, LTD)と呼ばれる可塑性が生じる<ref name="ref3"><pubmed>7097592</pubmed></ref>が、これが小脳皮質によるCSのタイミングの学習の原因であるという仮説が提出されている。これについては以降で解説する。  
 小脳皮質の[[平行線維]]―プルキンエ細胞間[[シナプス]]には、登上線維入力によって[[長期抑圧]](long-term depression, LTD)と呼ばれる可塑性が生じる<ref name="ref3"><pubmed>7097592</pubmed></ref>が、これが小脳皮質によるCSのタイミングの学習の原因であるという仮説が提出されている。これについては以降で解説する。  
40行目: 40行目:
== 小脳皮質によるタイミング学習の理論   ==
== 小脳皮質によるタイミング学習の理論   ==


[[Image:Yamazaki Nagao 図3.jpg|thumb|250px|<b>図3. 遅延型瞬目反射の条件付けに関わる小脳回路</b><br />(A)は全体、(B)では小脳皮質のみの回路を示す。]] [[Image:Yamazaki Nagao 図4.jpg|thumb|250px|<b>図4. CSの時系列を表現する顆粒細胞集団の活動の理論モデル</b><br /> (A) ゴルジ細胞―顆粒細胞フィードバック回路によるランダムネットワークモデル。(B) シミュレーションされた顆粒細胞集団によるCSの時系列のコーデイング。(C) 遅延型瞬目反射の条件付けの計算機シミュレーション。トレーニング中のトライアル1,18,19でのプルキンエ細胞(上)と小脳核(下)の膜電位のプロット。USが500ミリ秒で呈示されるとすると、プルキンエ細胞はその前後でスパイク発射を停止し、その結果脱抑制された小脳核がバースト的にスパイクを発射する。]]  
[[Image:Yamazaki Nagao 図3.jpg|thumb|250px|<b>図3. 遅延型瞬目反射条件づけに関わる小脳回路</b><br />(A)は全体、(B)では小脳皮質のみの回路を示す。]] [[Image:Yamazaki Nagao 図4.jpg|thumb|250px|<b>図4. CSの時系列を表現する顆粒細胞集団の活動の理論モデル</b><br /> (A) ゴルジ細胞―顆粒細胞フィードバック回路によるランダムネットワークモデル。(B) シミュレーションされた顆粒細胞集団によるCSの時系列のコーデイング。(C) 遅延型瞬目反射条件づけの計算機シミュレーション。トレーニング中のトライアル1,18,19でのプルキンエ細胞(上)と小脳核(下)の膜電位のプロット。USが500ミリ秒で呈示されるとすると、プルキンエ細胞はその前後でスパイク発射を停止し、その結果脱抑制された小脳核がバースト的にスパイクを発射する。]]  


 小脳のタイミング制御機構については、[[遅延型瞬目反射]]の条件付けの実験をもとに、理論モデルが提案されている。
 小脳のタイミング制御機構については、[[遅延型瞬目反射]]の条件づけの実験をもとに、理論モデルが提案されている。


 図3Aに、条件付けに関係する小脳皮質と小脳核の神経回路を示す。小脳の出力細胞であるプルキンエ細胞には、苔状線維の入力を受けた顆粒細胞の[[軸索]]突起である平行線維を介して、CSの時系列を反映する情報が伝えられる。CSが呈示されると、小脳核は興奮性入力とプルキンエ細胞を介する抑制性入力をともに受けるので強く興奮できず、その結果CRは生じない。USの信号は登上線維によってプルキンエ細胞に伝えられているので、CSとUSを同時に提示することを繰り返すと平行線維―プルキンエ細胞間シナプスに長期抑圧がおこり、USが生じる時に活性化する平行線維とプルキンエ細胞間のシナプスの伝達効率は低下する。その結果、小脳核はCSに対して強く興奮するようになり、CRが生じるようになる。 
 図3Aに、条件づけに関係する小脳皮質と小脳核の神経回路を示す。小脳の出力細胞であるプルキンエ細胞には、苔状線維の入力を受けた顆粒細胞の[[軸索]]突起である平行線維を介して、CSの時系列を反映する情報が伝えられる。CSが呈示されると、小脳核は興奮性入力とプルキンエ細胞を介する抑制性入力をともに受けるので強く興奮できず、その結果CRは生じない。USの信号は登上線維によってプルキンエ細胞に伝えられているので、CSとUSを同時に提示することを繰り返すと平行線維―プルキンエ細胞間シナプスに長期抑圧がおこり、USが生じる時に活性化する平行線維とプルキンエ細胞間のシナプスの伝達効率は低下する。その結果、小脳核はCSに対して強く興奮するようになり、CRが生じるようになる。 


 このように長期抑圧が遅延型瞬目反射の条件付けの原因であると仮定すると、CS呈示開始からUSまでの時間経過の情報が、平行線維―プルキンエ細胞間シナプス入力という空間情報に変換されることが必要となる。もしCSが呈示されている間、異なる顆粒細胞集団が時系列的に順番に活動するものとすれば(図3B)、USが生じた時点で活動している顆粒細胞の平行線維が形成するシナプスのみが長期抑圧によって減弱されるが、他の顆粒細胞集団が形成する平行線維のシナプスは影響を受けないことになる(図3B)。しかしながら、顆粒細胞は小脳皮質の他の神経細胞に比べ小さくかつ数が極めて多いので、無麻酔覚醒の動物を対象にした[[微小電極]]による細胞レベルの解析は技術的に困難であり、顆粒細胞の集団の活動がCSの時系列を反映しているかどうかについては、実験的に検証されていない。
 このように長期抑圧が遅延型瞬目反射条件づけの原因であると仮定すると、CS呈示開始からUSまでの時間経過の情報が、平行線維―プルキンエ細胞間シナプス入力という空間情報に変換されることが必要となる。もしCSが呈示されている間、異なる顆粒細胞集団が時系列的に順番に活動するものとすれば(図3B)、USが生じた時点で活動している顆粒細胞の平行線維が形成するシナプスのみが長期抑圧によって減弱されるが、他の顆粒細胞集団が形成する平行線維のシナプスは影響を受けないことになる(図3B)。しかしながら、顆粒細胞は小脳皮質の他の神経細胞に比べ小さくかつ数が極めて多いので、無麻酔覚醒の動物を対象にした[[微小電極]]による細胞レベルの解析は技術的に困難であり、顆粒細胞の集団の活動がCSの時系列を反映しているかどうかについては、実験的に検証されていない。


 顆粒細胞の集団がCSの時系列をコードする可能性については、理論モデルを用いたシミュレーションによる研究がなされている<ref name="ref10"><pubmed>19495900</pubmed></ref>。図4はその代表例である。顆粒細胞層は顆粒細胞とゴルジ細胞からなり、顆粒細胞は[[ゴルジ細胞]]を興奮させゴルジ細胞は顆粒細胞を抑制する。即ちこの2種類の神経細胞からなる神経回路は抑制性フィードバック回路を形成する(図4A)。ここで、ゴルジ細胞-顆粒細胞間の結合が空間的にランダムだと仮定すると、時間的に定常的な入力に対して、各顆粒細胞はそれぞれ異なる時間パターンで間欠的にスパイクの発射活動と停止を繰り返すことが可能である(図4B)。つまり集団として見ると、ある特定の時刻で活動する顆粒細胞の集団は一意に定まり、かつ活動する顆粒細胞集団は時間経過とともに徐々に変化することになる。従って、活動する顆粒細胞集団が遷移することによって、CS呈示開始からの時系列を表現することが可能になる。この様な考え方に基づいて、遅延型瞬目反射の条件付けを計算機シミュレーションにより再現することが可能である(図4C,<ref name="ref10"><pubmed>19495900</pubmed></ref>)。今後このようなモデルに対する実験的検証が望まれる。小脳プラットフォーム<ref>http://cerebellum.neuroinf.jp/</ref>にはこのモデルを含めた様々なモデルが登録されているので、参照されたい。
 顆粒細胞の集団がCSの時系列をコードする可能性については、理論モデルを用いたシミュレーションによる研究がなされている<ref name="ref10"><pubmed>19495900</pubmed></ref>。図4はその代表例である。顆粒細胞層は顆粒細胞とゴルジ細胞からなり、顆粒細胞は[[ゴルジ細胞]]を興奮させゴルジ細胞は顆粒細胞を抑制する。即ちこの2種類の神経細胞からなる神経回路は抑制性フィードバック回路を形成する(図4A)。ここで、ゴルジ細胞-顆粒細胞間の結合が空間的にランダムだと仮定すると、時間的に定常的な入力に対して、各顆粒細胞はそれぞれ異なる時間パターンで間欠的にスパイクの発射活動と停止を繰り返すことが可能である(図4B)。つまり集団として見ると、ある特定の時刻で活動する顆粒細胞の集団は一意に定まり、かつ活動する顆粒細胞集団は時間経過とともに徐々に変化することになる。従って、活動する顆粒細胞集団が遷移することによって、CS呈示開始からの時系列を表現することが可能になる。この様な考え方に基づいて、遅延型瞬目反射条件づけを計算機シミュレーションにより再現することが可能である(図4C,<ref name="ref10"><pubmed>19495900</pubmed></ref>)。今後このようなモデルに対する実験的検証が望まれる。小脳プラットフォーム<ref>http://cerebellum.neuroinf.jp/</ref>にはこのモデルを含めた様々なモデルが登録されているので、参照されたい。


== 小脳によるタイミング制御の特徴 ==
== 小脳によるタイミング制御の特徴 ==


 時間情報は脳の様々な部位で表現され、運動制御や認知機能に利用される。小脳のタイミング制御の特徴は、無意識で行われる前向き制御の運動のタイミングを学習により正確にすることであり、制御できる時間は数十ミリ秒~数百ミリ秒の範囲である。一方、大脳皮質の時間情報処理は、[[ワーキングメモリー]](作業記憶)を特異的にコードする神経細胞があることからもわかるように、制御できる時間は数百ミリ秒~数秒以上にわたり、かつ意識されることが特徴である。また、その時間情報の精度は小脳ほど正確ではない。[[大脳基底核]]の障害では、[[パーキンソン病]]のように自発的な運動が全般的に遅くなるような症状と、[[舞踏病]]や[[チック]]のような急速な[[不随意運動]]と、対極的な症状が出現する。大脳基底核の機能については、運動によって生じる報酬の予測という考え方が主流となっているが、これが運動の遅延と急速化という2つの対極的状態とどのように関連するかは今のところ知られてはいない。小脳障害では、運動の開始が遅延し、運動のリズムが遅くなることがしばしば生じるが、これは、感覚フィードバックを用いる運動に比べて十分に速い運動を可能にする小脳による前向き制御の障害によるものと解釈される。瞬目反射の条件付けの例が示すように、小脳皮質のタイミング学習の目標は、あくまでも、運動を起こす時間を正確にすることにより運動誤差を最小にすることにある。ヒトでは小脳皮質のタイミング学習は認知機能とも深く関わっているようであるが、その詳細については今後の研究課題である。
 時間情報は脳の様々な部位で表現され、運動制御や認知機能に利用される。小脳のタイミング制御の特徴は、無意識で行われる前向き制御の運動のタイミングを学習により正確にすることであり、制御できる時間は数十ミリ秒~数百ミリ秒の範囲である。一方、大脳皮質の時間情報処理は、[[ワーキングメモリー]](作業記憶)を特異的にコードする神経細胞があることからもわかるように、制御できる時間は数百ミリ秒~数秒以上にわたり、かつ意識されることが特徴である。また、その時間情報の精度は小脳ほど正確ではない。[[大脳基底核]]の障害では、[[パーキンソン病]]のように自発的な運動が全般的に遅くなるような症状と、[[舞踏病]]や[[チック]]のような急速な[[不随意運動]]と、対極的な症状が出現する。大脳基底核の機能については、運動によって生じる報酬の予測という考え方が主流となっているが、これが運動の遅延と急速化という2つの対極的状態とどのように関連するかは今のところ知られてはいない。小脳障害では、運動の開始が遅延し、運動のリズムが遅くなることがしばしば生じるが、これは、感覚フィードバックを用いる運動に比べて十分に速い運動を可能にする小脳による前向き制御の障害によるものと解釈される。瞬目反射条件づけの例が示すように、小脳皮質のタイミング学習の目標は、あくまでも、運動を起こす時間を正確にすることにより運動誤差を最小にすることにある。ヒトでは小脳皮質のタイミング学習は認知機能とも深く関わっているようであるが、その詳細については今後の研究課題である。


== 関連項目  ==
== 関連項目  ==


*[[小脳の神経回路]]  
*[[小脳の神経回路]]  
*[[瞬目反射の条件付け]]  
*[[瞬目反射条件づけ]]  
*[[前庭動眼反射]]
*[[前庭動眼反射]]