「底板」の版間の差分

159 バイト追加 、 2016年3月5日 (土)
編集の要約なし
編集の要約なし
3行目: 3行目:
''大阪大学大学院生命機能研究科''<br>
''大阪大学大学院生命機能研究科''<br>
DOI:<selfdoi /> 原稿受付日:2016年2月17日 原稿完成日:2016年月日<br>
DOI:<selfdoi /> 原稿受付日:2016年2月17日 原稿完成日:2016年月日<br>
担当編集委員:[http://researchmap.jp/noriko1128 大隅 典子](東北大学 大学院医学系研究科 附属創生応用医学研究センター 脳神経科学コアセンター 発生発達神経科学分野)<br>
担当編集委員:[http://researchmap.jp/noriko1128 大隅 典子](東北大学 大学院医学系研究科 附属創生応用医学研究センター [[脳神経]]科学コアセンター 発生発達神経科学分野)<br>
</div>
</div>


17行目: 17行目:
 そして近年、分子細胞生物学の技術的な進展を受けて底板の性質が徐々に明らかにされてきた。1990年、[[wikipedia:Dodd J|Dodd]]と[[wikipedia:Thomas Jessell|Jessell]]らのグループは[[wikipedia:ja:ニワトリ|ニワトリ]]胚を用いた実験で、異所的に新たに移植された[[脊索]]によって神経管背側や側方部に異所的な底板が分化誘導されること、また底板形成前に脊索を除去することで底板の形成が阻害されることを示した<ref name=ref3><pubmed>2237443</pubmed></ref>。これらの結果から、脊索に発現される何らかの分泌因子が底板の分化誘導に重要であることが示唆された。
 そして近年、分子細胞生物学の技術的な進展を受けて底板の性質が徐々に明らかにされてきた。1990年、[[wikipedia:Dodd J|Dodd]]と[[wikipedia:Thomas Jessell|Jessell]]らのグループは[[wikipedia:ja:ニワトリ|ニワトリ]]胚を用いた実験で、異所的に新たに移植された[[脊索]]によって神経管背側や側方部に異所的な底板が分化誘導されること、また底板形成前に脊索を除去することで底板の形成が阻害されることを示した<ref name=ref3><pubmed>2237443</pubmed></ref>。これらの結果から、脊索に発現される何らかの分泌因子が底板の分化誘導に重要であることが示唆された。


 その後[[ショウジョウバエ]]のパターン形成遺伝子hh([[hedgehog]])の[[脊椎動物]]相同遺伝子が3つ報告され、その内の1つである[[shh]]がコードするタンパク質[[SHH]]([[Sonic hedgehog]])が、[[脊索]]から分泌されて底板の発生分化に不可欠な分子であることが明らかにされた<ref name=ref4><pubmed>8124714</pubmed></ref> <ref name=ref5><pubmed>8837770</pubmed></ref>。
 その後[[ショウジョウバエ]]のパターン形成遺伝子hh([[ヘッジホッグ]])の[[脊椎動物]]相同遺伝子が3つ報告され、その内の1つである[[shh]]がコードするタンパク質[[SHH]]([[ソニック・ヘッジホッグ]])が、[[脊索]]から分泌されて底板の発生分化に不可欠な分子であることが明らかにされた<ref name=ref4><pubmed>8124714</pubmed></ref> <ref name=ref5><pubmed>8837770</pubmed></ref>。


 また、[[ノックアウトマウス]]などの変異[[マウス]]の解析から、Shhシグナルによる底板の発生分化に際してはその下流で、[[7回膜貫通型タンパク質]][[Smoothened]](Smo)や[[wikipedia:ja:ジンクフィンガー|ジンクフィンガー]]型[[転写調節因子]][[Gli2]]の神経管腹側正中部での発現が必須であることが報告された<ref name=ref6><pubmed>12435628</pubmed></ref> <ref name=ref7><pubmed>9636069</pubmed></ref> <ref name=ref8><pubmed>9655799</pubmed></ref>。
 また、[[ノックアウトマウス]]などの変異[[マウス]]の解析から、Shhシグナルによる底板の発生分化に際してはその下流で、[[7回膜貫通型タンパク質]][[Smoothened]](Smo)や[[wikipedia:ja:ジンクフィンガー|ジンクフィンガー]]型[[転写調節因子]][[Gli2]]の神経管腹側正中部での発現が必須であることが報告された<ref name=ref6><pubmed>12435628</pubmed></ref> <ref name=ref7><pubmed>9636069</pubmed></ref> <ref name=ref8><pubmed>9655799</pubmed></ref>。
31行目: 31行目:
 その代表的な例としては[[運動ニューロン]]が知られ、底板由来Shhの作用機序の理解が分子レベルにおいて最も進んでいる。その先駆的な研究の例としては、ニワトリ胚を用いての底板の異所的な移植実験による運動ニューロンの分化誘導<ref name=ref12><pubmed>1991324</pubmed></ref>、底板の組織片培養によるin vitroでの運動ニューロン分化誘導能の直接的な検出<ref name=ref13><pubmed>1350865</pubmed></ref> <ref name=ref14><pubmed>8500163</pubmed></ref>、底板由来Shhの濃度依存的な運動ニューロンへの運命決定機構やその発現抑制が運動ニューロンの消失を引き起こすことを示した一連の研究が挙げられる<ref name=ref15><pubmed>7736596</pubmed></ref> <ref name=ref16><pubmed>8929535</pubmed></ref>。
 その代表的な例としては[[運動ニューロン]]が知られ、底板由来Shhの作用機序の理解が分子レベルにおいて最も進んでいる。その先駆的な研究の例としては、ニワトリ胚を用いての底板の異所的な移植実験による運動ニューロンの分化誘導<ref name=ref12><pubmed>1991324</pubmed></ref>、底板の組織片培養によるin vitroでの運動ニューロン分化誘導能の直接的な検出<ref name=ref13><pubmed>1350865</pubmed></ref> <ref name=ref14><pubmed>8500163</pubmed></ref>、底板由来Shhの濃度依存的な運動ニューロンへの運命決定機構やその発現抑制が運動ニューロンの消失を引き起こすことを示した一連の研究が挙げられる<ref name=ref15><pubmed>7736596</pubmed></ref> <ref name=ref16><pubmed>8929535</pubmed></ref>。


 底板に端を発するShhの分子カスケードではまず、[[神経前駆細胞]]の時期において底板からの距離に応じて形成される固有のShh濃度の作用により、[[ホメオドメイン]]型転写調節因子と[[bHLH型転写調節因子]]の特異的な組み合わせ発現が促される<ref name=ref17><pubmed>11262869</pubmed></ref>。その後、それぞれの神経前駆細胞のクラスに付与された固有の遺伝プログラム(転写調節因子コード)が、最終[[細胞分裂]]後の個々の神経細胞のクラス特異的な運命決定に関わり、その分子カスケードの最終段階として、軸索投射先を規定する[[軸索ガイダンス]]プログラムや[[樹状突起]]形態などを制御する分子プルグラムの発現が引き起こされる<ref name=ref18><pubmed>12052910</pubmed></ref>。尚、神経前駆細胞の運命決定過程において中心的な役割を担っている底板由来のShhは、
 底板に端を発するShhの分子カスケードではまず、[[神経前駆細胞]]の時期において底板からの距離に応じて形成される固有のShh濃度の作用により、[[ホメオドメイン]]型転写調節因子と[[bHLH型転写調節因子]]の特異的な組み合わせ発現が促される<ref name=ref17><pubmed>11262869</pubmed></ref>。その後、それぞれの神経前駆細胞のクラスに付与された固有の遺伝プログラム(転写調節因子コード)が、最終[[細胞分裂]]後の個々の神経細胞のクラス特異的な運命決定に関わり、その分子カスケードの最終段階として、軸索投射先を規定する[[軸索ガイダンス]]プログラムや[[樹状突起]]形態などを制御する分子プログラムの発現が引き起こされる<ref name=ref18><pubmed>12052910</pubmed></ref>。尚、神経前駆細胞の運命決定過程において中心的な役割を担っている底板由来のShhは、


 その後に交連ニューロン軸索の底板へのガイダンスにも関与していることが報告されているが、そこでは運命決定の時とは異なるシグナル伝達カスケードが軸索[[成長円錐]]内で活性化していることが示されている<ref name=ref19><pubmed>12679031</pubmed></ref> <ref name=ref20><pubmed>19447091</pubmed></ref>。
 その後に交連ニューロン軸索の底板へのガイダンスにも関与していることが報告されているが、そこでは運命決定の時とは異なるシグナル伝達カスケードが軸索[[成長円錐]]内で活性化していることが示されている<ref name=ref19><pubmed>12679031</pubmed></ref> <ref name=ref20><pubmed>19447091</pubmed></ref>。


===軸索ガイダンス===
===軸索ガイダンス===
 脊椎動物の発生期において、最終[[細胞分裂]]後の神経細胞に対する底板の重要な役割としては、神経回路形成時における軸索ガイダンスが挙げられる<ref name=ref21><pubmed>7605072</pubmed></ref>。特に、底板で正中交差を形成する交連ニューロン軸索における役割は、軸索ガイダンス研究の重要なモデルの一つとして、この研究領域を歴史的にも牽引してきている<ref name=ref22><pubmed>8895455</pubmed></ref> <ref name=ref23><pubmed>12471249</pubmed></ref>。
 脊椎[[動物]]の発生期において、最終[[細胞分裂]]後の神経細胞に対する底板の重要な役割としては、神経回路形成時における軸索ガイダンスが挙げられる<ref name=ref21><pubmed>7605072</pubmed></ref>。特に、底板で正中交差を形成する交連ニューロン軸索における役割は、軸索ガイダンス研究の重要なモデルの一つとして、この研究領域を歴史的にも牽引してきている<ref name=ref22><pubmed>8895455</pubmed></ref> <ref name=ref23><pubmed>12471249</pubmed></ref>。


 1988年、[[wikipedia:ja:コロンビア大学|コロンビア大学]]のJessell研究室にてポスドクであったTessier-LavigneとDodd研究室のPlaczekは、[[ラット]]胎仔を用いた脊髄組織片の共培養を[[3次元コラーゲンゲルアッセイ]]により行い、正中交差形成時期の底板細胞が何らかの分子を分泌することで、脊髄交連ニューロンの軸索を特異的に誘引することを見出した<ref name=ref24><pubmed>3205306</pubmed></ref> <ref name=ref25><pubmed>2081459</pubmed></ref>。その後、[[wikipedia:ja:カリフォルニア大学サンフランシスコ校|カリフォルニア大学サンフランシスコ校]]にて、Tessier-Lavigneを中心とするグループはその底板由来の誘引活性の正体として、[[Netrin-1]]を同定するに至った<ref name=ref26><pubmed>8062385</pubmed></ref> <ref name=ref27><pubmed>8062384</pubmed></ref>。
 1988年、[[wikipedia:ja:コロンビア大学|コロンビア大学]]のJessell研究室にてポスドクであったTessier-LavigneとDodd研究室のPlaczekは、[[ラット]]胎仔を用いた脊髄組織片の共培養を[[3次元コラーゲンゲルアッセイ]]により行い、正中交差形成時期の底板細胞が何らかの分子を分泌することで、脊髄交連ニューロンの軸索を特異的に誘引することを見出した<ref name=ref24><pubmed>3205306</pubmed></ref> <ref name=ref25><pubmed>2081459</pubmed></ref>。その後、[[wikipedia:ja:カリフォルニア大学サンフランシスコ校|カリフォルニア大学サンフランシスコ校]]にて、Tessier-Lavigneを中心とするグループはその底板由来の誘引活性の正体として、[[ネトリン-1]]を同定するに至った<ref name=ref26><pubmed>8062385</pubmed></ref> <ref name=ref27><pubmed>8062384</pubmed></ref>。


 また、Netrin-1は底板のすべての[[吻尾軸]]レベル(脊髄尾側から[[中脳]]吻側までの領域)において発現していたことから、底板由来のNetrin-1による腹側正中部への軸索誘引作用は脊髄にとどまらず、より吻側の脳においても誘引作用を受けている軸索群が存在している可能性が考えられた<ref name=ref26 />。実際、後脳の底板で正中交差を行う[[小脳核]]ニューロンの軸索<ref name=ref28><pubmed>7748563</pubmed></ref>や、中脳の底板で正中交差を行う[[視蓋脊髄路]]投射の軸索<ref name=ref29><pubmed>8982157</pubmed></ref>においても、底板由来のNetrin-1による誘引作用が報告された。
 また、ネトリン-1は底板のすべての[[吻尾軸]]レベル(脊髄尾側から[[中脳]]吻側までの領域)において発現していたことから、底板由来のネトリン-1による腹側正中部への軸索誘引作用は脊髄にとどまらず、より吻側の脳においても誘引作用を受けている軸索群が存在している可能性が考えられた<ref name=ref26 />。実際、後脳の底板で正中交差を行う[[小脳核]]ニューロンの軸索<ref name=ref28><pubmed>7748563</pubmed></ref>や、中脳の底板で正中交差を行う[[視蓋脊髄路]]投射の軸索<ref name=ref29><pubmed>8982157</pubmed></ref>においても、底板由来のネトリン-1による誘引作用が報告された。


 一方で、底板は交連ニューロン軸索にとっては対側の最終標的細胞に投射する途中における中間標的としても重要な役割を果たし、正中交差後の交連ニューロンの軸索挙動を規定している<ref name=ref30><pubmed>20534708</pubmed></ref>。特に、交連ニューロン軸索と底板細胞との相互作用は、Netrin-1により誘引されて底板に到達した交連ニューロン軸索に対してNetrin-1に対する応答性を失わせ、さらには底板に発現する反発分子である[[スリット]]や[[セマフォリン]]への応答性を正中交差後に獲得させることが報告された<ref name=ref31><pubmed>9417018</pubmed></ref> <ref name=ref32><pubmed>10975526</pubmed></ref>。
 一方で、底板は交連ニューロン軸索にとっては対側の最終標的細胞に投射する途中における中間標的としても重要な役割を果たし、正中交差後の交連ニューロンの軸索挙動を規定している<ref name=ref30><pubmed>20534708</pubmed></ref>。特に、交連ニューロン軸索と底板細胞との相互作用は、ネトリン-1により誘引されて底板に到達した交連ニューロン軸索に対してネトリン-1に対する応答性を失わせ、さらには底板に発現する反発分子である[[スリット]]や[[セマフォリン]]への応答性を正中交差後に獲得させることが報告された<ref name=ref31><pubmed>9417018</pubmed></ref> <ref name=ref32><pubmed>10975526</pubmed></ref>。


 このような軸索応答性の制御により、交連ニューロン軸索をNetrin-1の分泌源である底板に留めずに、さらには一度、底板で正中交差を形成した軸索に対しては再び正中交差が起こらないようにしていると考えられている。さらに近年、底板での軸索応答性の変化に関わる交連ニューロン側の責任分子の一つとして、[[ロボ3]]([[ロボ3.1]]と[[ロボ3.2]])が同定され、底板に発現している何らかの分子(2016年1月現在、未同定)が正中交差時の交連ニューロン軸索に作用することで、ロボ3の交連ニューロンにおける発現のオン・オフを制御していることが示されている<ref name=ref33><pubmed>15084255</pubmed></ref> <ref name=ref34><pubmed>23746841</pubmed></ref>。
 このような軸索応答性の制御により、交連ニューロン軸索をネトリン-1の分泌源である底板に留めずに、さらには一度、底板で正中交差を形成した軸索に対しては再び正中交差が起こらないようにしていると考えられている。さらに近年、底板での軸索応答性の変化に関わる交連ニューロン側の責任分子の一つとして、[[ロボ3]]([[ロボ3.1]]と[[ロボ3.2]])が同定され、底板に発現している何らかの分子(2016年1月現在、未同定)が正中交差時の交連ニューロン軸索に作用することで、ロボ3の交連ニューロンにおける発現のオン・オフを制御していることが示されている<ref name=ref33><pubmed>15084255</pubmed></ref> <ref name=ref34><pubmed>23746841</pubmed></ref>。


 また、交連ニューロン軸索と底板細胞との相互作用が、軸索成長円錐内での局所的なタンパク質[[翻訳]]を引き起こし、その結果が正中交差後の軸索において[[Ephレセプター]]の発現増大に関与しているとする可能性も指摘されている<ref name=ref35><pubmed>12150930</pubmed></ref>。
 また、交連ニューロン軸索と底板細胞との相互作用が、軸索成長円錐内での局所的なタンパク質[[翻訳]]を引き起こし、その結果が正中交差後の軸索において[[Ephレセプター]]の発現増大に関与しているとする可能性も指摘されている<ref name=ref35><pubmed>12150930</pubmed></ref>。


 一方で、底板は腹側正中部から離れる方向に伸長していく軸索群に対しては反発活性を示すことが組織培養片を用いたin vitroの系で報告されている<ref name=ref36><pubmed>7758116</pubmed></ref> <ref name=ref37><pubmed>7541631</pubmed></ref> <ref name=ref38><pubmed>7748556</pubmed></ref>。尚、底板による軸索ガイダンス全般においては、底板細胞に発現している誘引分子と反発分子が分泌性か膜結合接着性かにより、その作用効果や及ぼされる作動距離が異なる。以下では、底板に発現している主要な軸索ガイダンス分子の機能について概説する。
 一方で、底板は腹側正中部から離れる方向に伸長していく軸索群に対しては反発活性を示すことが組織培養片を用いたin vitroの系で報告されている<ref name=ref36><pubmed>7758116</pubmed></ref> <ref name=ref37><pubmed>7541631</pubmed></ref> <ref name=ref38><pubmed>7748556</pubmed></ref>。尚、底板による軸索ガイダンス全般においては、底板細胞に発現している[[誘引分子]]と[[反発分子]]が分泌性か膜結合接着性かにより、その作用効果や及ぼされる作動距離が異なる。以下では、底板に発現している主要な軸索ガイダンス分子の機能について概説する。


====分泌性因子====
====分泌性因子====
=====Netrin=====
=====ネトリン=====
 Tessier-Lavigneらによる脊髄背側組織と底板組織の3次元コラーゲンゲル内での共培養実験の結果、底板から分泌されるタンパク質性の分子が交連ニューロンの軸索伸長促進、および距離依存的な誘引に関わっていることが示唆された<ref name=ref24 /> <ref name=ref25 />。この分泌因子は後に単離され、Netrin-1と命名された<ref name=ref26 /> <ref name=ref27 />。Netrin-1は、[[ショウジョウバエ]]から[[ヒト]]に至るまで、構造的にも機能的にも保存された分子であり、それぞれの動物種においては発生期中枢神経系の正中部細胞に発現されるようになるという特徴をもつ<ref name=ref39><pubmed>20074930</pubmed></ref>。尚、交連ニューロンの軸索は腹側正中部の底板へ伸長する過程では、Netrin-1のレセプターの1つである[[DCC]]を発現していることが知られている<ref name=ref40><pubmed>886190</pubmed></ref>。また、底板から分泌されるNetrin-1が、実際に脊髄内で、腹側から背側にかけて濃度勾配を形成して存在していることが示されている<ref name=ref41><pubmed>16928876</pubmed></ref>。一方で、交連ニューロンの軸索伸長方向とは逆で、底板から離れる背側方向に伸長していく後脳の[[滑車神経]]の軸索に対しては、反発作用を示すことがin vitroの3次元コラーゲンゲルアッセイにおいて報告されている<ref name=ref36 />。尚、Netrin-1ノックアウトマウスの表現型解析においては、交連ニューロン軸索の底板への伸長過程は影響を受けていたが、滑車神経の軸索ガイダンスには異常が認められなかった<ref name=ref42><pubmed>8978605</pubmed></ref> <ref name=ref43><pubmed>26257176</pubmed></ref>。
 Tessier-Lavigneらによる脊髄背側組織と底板組織の3次元コラーゲンゲル内での共培養実験の結果、底板から分泌されるタンパク質性の分子が交連ニューロンの軸索伸長促進、および距離依存的な誘引に関わっていることが示唆された<ref name=ref24 /> <ref name=ref25 />。この分泌因子は後に単離され、ネトリン-1と命名された<ref name=ref26 /> <ref name=ref27 />。ネトリン-1は、[[ショウジョウバエ]]から[[ヒト]]に至るまで、構造的にも機能的にも保存された分子であり、それぞれの動物種においては発生期中枢神経系の正中部細胞に発現されるようになるという特徴をもつ<ref name=ref39><pubmed>20074930</pubmed></ref>。尚、交連ニューロンの軸索は腹側正中部の底板へ伸長する過程では、ネトリン-1の[[受容体]]の1つである[[DCC]]を発現していることが知られている<ref name=ref40><pubmed>886190</pubmed></ref>。また、底板から分泌されるネトリン-1が、実際に脊髄内で、腹側から背側にかけて濃度勾配を形成して存在していることが示されている<ref name=ref41><pubmed>16928876</pubmed></ref>。一方で、交連ニューロンの軸索伸長方向とは逆で、底板から離れる背側方向に伸長していく後脳の[[滑車神経]]の軸索に対しては、反発作用を示すことがin vitroの3次元コラーゲンゲルアッセイにおいて報告されている<ref name=ref36 />。尚、ネトリン-1ノックアウトマウスの表現型解析においては、交連ニューロン軸索の底板への伸長過程は影響を受けていたが、滑車神経の[[軸索ガイダンス]]には異常が認められなかった<ref name=ref42><pubmed>8978605</pubmed></ref> <ref name=ref43><pubmed>26257176</pubmed></ref>。


=====スリット=====
=====スリット=====
72行目: 72行目:


=====エフリン=====
=====エフリン=====
 膜貫通型エフリンクラスの[[エフリン-B3]]が底板に発現していることが知られている<ref name=ref52><pubmed>10704386</pubmed></ref>。ノックアウトマウスの解析により、脊髄交連ニューロンに発現する[[EphB受容体]]とエフリン-B3による順行性のシグナル伝達が、正常な軸索正中交差に必要であることが報告されている<ref name=ref53><pubmed>16943546</pubmed></ref>。
 膜貫通型[[エフリン]]クラスの[[エフリン-B3]]が底板に発現していることが知られている<ref name=ref52><pubmed>10704386</pubmed></ref>。ノックアウトマウスの解析により、脊髄交連ニューロンに発現する[[EphB受容体]]とエフリン-B3による順行性のシグナル伝達が、正常な軸索正中交差に必要であることが報告されている<ref name=ref53><pubmed>16943546</pubmed></ref>。


===細胞移動===
===細胞移動===
 神経細胞は発達の過程で、生まれた場所から正しく機能するための場所へと移動する。このような細胞移動の過程においても、底板由来のガイダンス分子が重要な役割を果たしている。後脳背側の[[菱脳唇]]で生まれる[[下オリーブ核]]ニューロンに代表される[[小脳前核]]ニューロンは発達に伴い腹側の底板に向かって細胞移動を行うが、この腹側への細胞移動に底板から分泌されるNetrin-1が誘引的に作用していることが示されている<ref name=ref54><pubmed>10341242</pubmed></ref>。
 神経細胞は発達の過程で、生まれた場所から正しく機能するための場所へと移動する。このような細胞移動の過程においても、底板由来のガイダンス分子が重要な役割を果たしている。後脳背側の[[菱脳唇]]で生まれる[[下オリーブ核]]ニューロンに代表される[[小脳前核]]ニューロンは発達に伴い腹側の底板に向かって細胞移動を行うが、この腹側への細胞移動に底板から分泌されるネトリン-1が誘引的に作用していることが示されている<ref name=ref54><pubmed>10341242</pubmed></ref>。


 また、下オリーブ核ニューロンの細胞体はロボ1とロボ2を発現することで底板由来のスリットによる反発作用を受けることが知られ、この反発作用により下オリーブ核ニューロンの[[細胞体]]が底板を越えて対側へ移動することが妨げられていると考えられている<ref name=ref55><pubmed>18562598</pubmed></ref>。
 また、下オリーブ核ニューロンの細胞体はロボ1とロボ2を発現することで底板由来のスリットによる反発作用を受けることが知られ、この反発作用により下オリーブ核ニューロンの[[細胞体]]が底板を越えて対側へ移動することが妨げられていると考えられている<ref name=ref55><pubmed>18562598</pubmed></ref>。


 一方で、[[オリゴデンドロサイト]]は底板近傍で生まれた後に、底板から離れる方向に細胞移動を行うことが知られているが、この細胞移動に底板由来のNetrin-1の反発作用が関与していることが報告されている<ref name=ref56><pubmed>12736344</pubmed></ref>。
 一方で、[[オリゴデンドロサイト]]は底板近傍で生まれた後に、底板から離れる方向に細胞移動を行うことが知られているが、この細胞移動に底板由来のネトリン-1の反発作用が関与していることが報告されている<ref name=ref56><pubmed>12736344</pubmed></ref>。


==関連項目==
==関連項目==
*[[ネトリン]]
*[[蓋板]]
*[[蓋板]]
*[[翼板]]
*[[翼板]]