9,444
回編集
細編集の要約なし |
細編集の要約なし |
||
11行目: | 11行目: | ||
{{box|text= | {{box|text= | ||
外界が大きく動く時、例えば、電車中でぼんやりと車窓から景色を眺めている時には、流れていく風景を追うよう遅い[[眼球運動]] | 外界が大きく動く時、例えば、電車中でぼんやりと車窓から景色を眺めている時には、流れていく風景を追うよう遅い[[眼球運動]](緩徐相)と、リセットのための緩徐相とは逆向きの速い眼球運動(急速相)が繰り返される。これを視覚運動性眼振(optokinetic nystagmus, OKN)と呼ぶ。視運動性眼振の緩徐相の眼球運動は、周辺視による[[視機性眼球反応]](optokinetic response, OKR)に起因する。視機性眼球反応は、[[網膜]]上の像が外界の動きによってブレないように作用する眼球運動であり、[[前庭動眼反射]]とともに[[姿勢保持]]に重要な役割を演じている。霊長類では、網膜の中心窩に対象を捉えてものを[[固視]]する(中心視)のための[[滑動性追跡眼球運動]](smooth pursuit eye movement)が発達している。[[wikipedia:ja:ヒト|ヒト]]や[[wikipedia:ja:サル|サル]]の視運動性眼振の緩徐相のかなりはこの滑動性追跡眼球運動に起因する。 | ||
}} | }} | ||
== 視機性眼球反応の神経回路と動特性 == | == 視機性眼球反応の神経回路と動特性 == | ||
[[Image:図1 OKN.jpg|thumb|250px|'''図1.マウスを対象とした視機性眼球反応(OKR)の誘発と赤外線カメラを用いた測定システム'''<br> | [[Image:図1 OKN.jpg|thumb|250px|'''図1.マウスを対象とした視機性眼球反応(OKR)の誘発と赤外線カメラを用いた測定システム'''<br>(A)マウスを円筒状の縞模様(ドットパターン)スクリーンの中に置き、頭を固定する。スクリーンを正弦波状に回転させたときに誘発される眼球運動を赤外線テレビカメラで記録し、瞳孔の中心の位置を計測する。<br>(B)OKRのゲインと位相差の算出法。計測された眼球運動とスクリーンの動きとを比較し、ゲインと位相差(時間、もしくは1周期360度として角度に換算)を算出する。<br>(C)マウスの水平性OKRの位相差とゲイン。<ref name=ref2 />を改変。<br>(D)黒眼ウサギの水平性OKRの位相差とゲイン。<ref name=ref1 />を改変。]] | ||
視機性眼球反応 (OKR)とは、動物のまわりの視野が動く時に、[[網膜]]に写る外界の像がブレないように眼が動く反射である。OKRを誘発するのは、網膜上に像の滑り(retinal slip)が生じることであり、眼が動くことによってretinal slipは減少する。従って、OKRはネガテイブフィードバック制御の反射である。OKRはすべての動物種に見られる。実験的にOKRを誘発するには、動物の眼前に、コントラストが明瞭な縦縞もしくはチェック模様のドラム状の大きなスクリーンをおき、それを一方向もしくは[[wikipedia:ja:正弦波|正弦波]]状に回転させる<ref name="ref1"><pubmed>6609085</pubmed></ref> <ref name="ref2"><pubmed>11849733</pubmed></ref>。周辺視しかない単眼視の動物種([[wikipedia:ja:魚類|魚類]]、[[wikipedia:ja:鳥類|鳥類]]、[[wikipedia:ja:マウス|マウス]]、[[wikipedia:ja:ラット|ラット]]や[[wikipedia:ja:ウサギ|ウサギ]])では、スクリーンをゆっくりと動かした時に、それを追従するようにOKRが誘発される。ところが[[両眼視]]で中心視の発達しているサルやヒトなどの霊長類では、[[固視]]の機能があるので、ただ単に単純な模様のスクリーンを廻してもOKRはほとんど誘発されない。ヒトやサルでこのような方法でOKRが観察されるのは、固視機能があまり発達していない幼弱期か、あるいは特定の視標に注視していない時、例えば電車に乗ってぼんやりと外を眺めている時である。 | 視機性眼球反応 (OKR)とは、動物のまわりの視野が動く時に、[[網膜]]に写る外界の像がブレないように眼が動く反射である。OKRを誘発するのは、網膜上に像の滑り(retinal slip)が生じることであり、眼が動くことによってretinal slipは減少する。従って、OKRはネガテイブフィードバック制御の反射である。OKRはすべての動物種に見られる。実験的にOKRを誘発するには、動物の眼前に、コントラストが明瞭な縦縞もしくはチェック模様のドラム状の大きなスクリーンをおき、それを一方向もしくは[[wikipedia:ja:正弦波|正弦波]]状に回転させる<ref name="ref1"><pubmed>6609085</pubmed></ref> <ref name="ref2"><pubmed>11849733</pubmed></ref>。周辺視しかない単眼視の動物種([[wikipedia:ja:魚類|魚類]]、[[wikipedia:ja:鳥類|鳥類]]、[[wikipedia:ja:マウス|マウス]]、[[wikipedia:ja:ラット|ラット]]や[[wikipedia:ja:ウサギ|ウサギ]])では、スクリーンをゆっくりと動かした時に、それを追従するようにOKRが誘発される。ところが[[両眼視]]で中心視の発達しているサルやヒトなどの霊長類では、[[固視]]の機能があるので、ただ単に単純な模様のスクリーンを廻してもOKRはほとんど誘発されない。ヒトやサルでこのような方法でOKRが観察されるのは、固視機能があまり発達していない幼弱期か、あるいは特定の視標に注視していない時、例えば電車に乗ってぼんやりと外を眺めている時である。 | ||
26行目: | 26行目: | ||
== 小脳片葉による視機性眼球反応ゲインの適応調節 == | == 小脳片葉による視機性眼球反応ゲインの適応調節 == | ||
[[Image:図2 OKN.jpg|thumb|250px|'''図2.OKRのゲインの適応'''<br>(A)OKRの短期と長期のゲインの適応。マウスに1日1時間の周期0.16Hz、振幅15度の正弦波状スクリーンの回転によるトレーニングを連続して5日間行ったときのOKRのゲインの変化。○は毎日のトレーニングの前のゲイン、●は1時間のトレーニング後のゲイン。トレーニング時以外はマウスを暗所飼育した。5日間のトレーニング後、マウスを通常の飼育(明、12時間;暗、12時間)に戻し、OKRのゲインの回復を2週間ほど調べた。右は、同じマウスの1日目と3, 4、6日目のOKRの平均とレース。**, P < 0.01; *, P <0.1 (paired t-test).(B)小脳片葉によるOKRの適応制御機構。適応の短期の記憶痕跡は小脳片葉に形成されるが、長期の記憶は前庭神経核に保持される。<ref name=ref7 />を改変。]] | [[Image:図2 OKN.jpg|thumb|250px|'''図2.OKRのゲインの適応'''<br>(A)OKRの短期と長期のゲインの適応。マウスに1日1時間の周期0.16Hz、振幅15度の正弦波状スクリーンの回転によるトレーニングを連続して5日間行ったときのOKRのゲインの変化。○は毎日のトレーニングの前のゲイン、●は1時間のトレーニング後のゲイン。トレーニング時以外はマウスを暗所飼育した。5日間のトレーニング後、マウスを通常の飼育(明、12時間;暗、12時間)に戻し、OKRのゲインの回復を2週間ほど調べた。右は、同じマウスの1日目と3, 4、6日目のOKRの平均とレース。**, P < 0.01; *, P <0.1 (paired t-test).<br>(B)小脳片葉によるOKRの適応制御機構。適応の短期の記憶痕跡は小脳片葉に形成されるが、長期の記憶は前庭神経核に保持される。<ref name=ref7 />を改変。]] | ||
OKRは、ゆっくりとした外界の動きにはゲインが高く外界の動きに追従できるので、それだけでretinal slipを十分少なくすることができるが、外界が速く動くとゲインはかなり低くなり、生じたretinal slipをネガテイブフイードバックの機構では十分に補正することができなくなる。そのような場合に、小脳によるフィードフォーワード制御のメカニズムが必要となる。 | OKRは、ゆっくりとした外界の動きにはゲインが高く外界の動きに追従できるので、それだけでretinal slipを十分少なくすることができるが、外界が速く動くとゲインはかなり低くなり、生じたretinal slipをネガテイブフイードバックの機構では十分に補正することができなくなる。そのような場合に、小脳によるフィードフォーワード制御のメカニズムが必要となる。 | ||
40行目: | 40行目: | ||
== 視覚運動性眼振と視機性眼球反応 == | == 視覚運動性眼振と視機性眼球反応 == | ||
[[Image:図3 OKN rev.jpg|thumb|250px|'''図3.視運動性眼振(OKN)の特徴'''<br>(A)ウサギの周りのドラム状のスクリーンを左方向に定加速度(1o/ | [[Image:図3 OKN rev.jpg|thumb|250px|'''図3.視運動性眼振(OKN)の特徴'''<br>(A)ウサギの周りのドラム状のスクリーンを左方向に定加速度(1o/s2)で回転させると、ウサギの左眼には、回転と同じ方向の緩徐相と、逆の方向の急速相が生じる。緩徐相が一定の速度に達するには時間がかかり、かつその最高速度はスクリーンの回転速度に比べて小さい。<br>(B)Aと同様の実験をヒト(ドラムの加速度、1o/s2)で行なったときに観察されるOKN。ウサギの時に比べて、OKNはすぐに立ち上がり、そのあとやや遅れてスクリーンの速度と同じ速度に達する。<br>(C)OKNとOKANの速度の時間経過をヒト、サル、ネコ,ウサギで比べたもの。AとBは<ref name=ref10 />を改変。Cは<ref name=ref9>'''篠田義一'''<br>視運動性眼振の動特性と神経機構. 眼球運動の生理学(小松崎, 篠田,丸尾編)<br>''医学書院'',東京, 1985.</ref>を改変。]] | ||
前庭や視覚の機能の検査に、ドラム状の縞模様のスクリーンを定加速度かつ定方向にまわすことで誘発される視覚運動性眼振 (OKN) が用いられる。OKNは、1820年に、小脳のプルキンエ細胞の命名者である[[wikipedia:Jan Evangelista Purkyně|J. E. Purkinje]] (1787-1869) によって初めて記載された。図3AにウサギとヒトのOKNの例を示す。 | 前庭や視覚の機能の検査に、ドラム状の縞模様のスクリーンを定加速度かつ定方向にまわすことで誘発される視覚運動性眼振 (OKN) が用いられる。OKNは、1820年に、小脳のプルキンエ細胞の命名者である[[wikipedia:Jan Evangelista Purkyně|J. E. Purkinje]] (1787-1869) によって初めて記載された。図3AにウサギとヒトのOKNの例を示す。 | ||
55行目: | 55行目: | ||
== 外部リンク == | == 外部リンク == | ||
*[http://cerebellum.neuroinf.jp/ 小脳プラットフォーム] | *[http://cerebellum.neuroinf.jp/ 小脳プラットフォーム] | ||