「ステロイド」の版間の差分

提供:脳科学辞典
ナビゲーションに移動 検索に移動
編集の要約なし
(3人の利用者による、間の81版が非表示)
1行目: 1行目:
<div align="right"> 
英語名:steroid 独:steroide 仏:stéroïdes  
<font size="+1">[http://researchmap.jp/norio5 堀井 謹子]、[http://researchmap.jp/mayuminishi 西 真弓]</font><br>
''奈良県立医科大学 医学部 医学科''<br>
DOI:<selfdoi /> 原稿受付日:2012年4月5日 原稿完成日:2012年12月10日 一部修正:2020年6月24日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)<br>
</div>


英語名:steroid 独:Steroide 仏:stéroïdes  
ステロイドとは、分子中にステロイド核と称する骨格構造をもつ一連の有機化合物の総称である。ほとんどの動植物で生合成され、コレステロール、胆汁酸、ビタミンD、ステロイドホルモン等がその代表例である。


{{box|text=
<br>
 ステロイドとは、分子中にステロイド核と称する骨格構造をもつ一連の有機化合物の総称である。ほとんどの動植物で生合成され、コレステロール、胆汁酸、ビタミンD、ステロイドホルモン等がその代表例である。
}}


[[Image:Steroid structure.png|thumb|right|300px|'''図1.ステロイド核の構造''']]
== ステロイドの構造  ==


==基本骨格==
 [[Image:Steroid structure.png|thumb|right|400px|ステロイド核の構造]]  ステロイド核とは、シクロペンタノペルヒドロフェナントレン核のことを指し、3つのイス型六員環と1つの五員環がつながった構造をしている<ref name="IUPAC">{{cite journal | journal = [[Pure & Appl. Chem.]] | volume = 61 | issue = 10 | pages = 1783–1822 | year = 1989 | title = Nomenclature of Steroids (Recommendations 1989) | author = G. P. Moss | doi = 10.1351/pac198961101783}} [http://iupac.org/publications/pac/61/10/1783/pdf/.pdf PDF]</ref>。右図のように構造式を書いた場合、それぞれの環を左下から順にA環、B環、C環、D環と呼ぶ。一部あるいはすべての炭素が水素化され、通常はC-10とC-13にメチル基を、また多くの場合C-17にアルキル基を有する。生体物質としてのステロイドはC-3位がヒドロキシル化もしくはカルボニル化されたステロール類である。
 ステロイド核とは、シクロペンタノペルヒドロフェナントレン核のことを指し、3つのイス型シクロヘキサン環と1つのシクロペンタン環がつながった構造を持つ<ref>'''G. P. Moss'''<br> Nomenclature of Steroids (Recommendations 1989)<br>''Pure & Appl. Chem.'':1989, 61(10);1783–1822</ref>。図1のように[[wikipedia:ja:構造式|構造式]]を書いた場合、それぞれの環を左下から順にA環、B環、C環、D環と呼ぶ。一部あるいはすべての炭素が水素化され、通常はC-10とC-13に[[wikipedia:ja:メチル基|メチル基]]を、また多くの場合C-17に[[wikipedia:ja:アルキル基|アルキル基]]を有する。生体物質としてのステロイドはC-3位が[[wikipedia:ja:ヒドロキシル基|ヒドロキシル化]]ヒドロキシル化もしくは[[wikipedia:ja:カルボニル基|カルボニル化]]された[[wikipedia:ja:ステロール|ステロール]]類である。


[[Image:Steroid synthesis.png|thumb|right|500px|'''図2.ステロイドホルモンの構造と生合成経路'''<br>
<br>  
P450 scc:コレステロール側鎖切断酵素(cholesterole side chain cleavage)<br>
3β-HSD:3β-ヒドキシステロイド脱水素酵素・異性化酵素 (3β-hydroxysteroid dehydrogenase)<br>
P450c17:17α-水酸化・開裂酵素 (17 α-hydoroxylase/17, 20 lyase) <br>
P450c21:21‐水酸化酵素 (C21-hydroxylase) <br>
P450c11:11β-水酸化酵素 (11β-hydroxylase) <br>
P450c18:アルドステロン合成酵素または18-水酸化酵素 (18-hydroxylase) <br>
P450arom:アロマターゼ (aromatase) <br>
17β-HSD: 17β-ヒドキシステロイド脱水素酵素 ]]


==ステロイドホルモン==
==  生体内ステロイド   ==
 ステロイド核をもつホルモンをステロイドホルモンと呼ぶ。[[wj:副腎|副腎]]、[[wj:精巣|精巣]]、[[wj:卵巣|卵巣]]等の[[wj:内分泌|内分泌]]器官より分泌される。特に脳で合成されるステロイドはニューロステロイドと呼ばれる。ステロイドホルモンの特徴は、脂溶性かつ分子量が低いために[[細胞膜]]や[[血液脳関門]]を容易に通過できること、また細胞質に存在する[[wj:ステロイドホルモン受容体|ステロイドホルモン受容体]]に結合し、核内にて標的遺伝子の[[wj:転写|転写]]活性を調節することである。近年、このような核受容体による遺伝子発現を介したステロイドホルモンのゲノミック作用に加え、膜受容体を介した遺伝子発現を伴わないノンゲノミック作用が注目されている<ref><pubmed>21357682</pubmed></ref>。


===生合成===
=== コレステロール  ===


 全てのステロイドホルモンはコレステロールより合成される(図2)<ref name="takemori" />。炭素数27のコレステロールは、コレステロール側鎖切断酵素(P450 scc)の作用により、側鎖(炭素数6)が切断されてプレグネノロン(炭素数21)となる。この過程はすべてのステロイドホルモン分泌器官で共通したプロセスである。最終的に、副腎では炭素数は21の[[糖質コルチコイド]][[鉱質コルチコイド]]が、また精巣では炭素数がさらに2個減少した[[アンドロゲン]](炭素数19)が、卵巣では炭素数が1個減少した[[エストロゲン]](炭素数18)が生成される。
[[Image:Cholesterol.png|thumb|right|200px|コレステロールの構造]]コレステロールの分子式はC27H46Oで表わされ、ステロイド核の3位の炭素にOH基がついたステロールを基礎骨格とし、17位の炭素はアルキル化されている。その名称は、胆石からコレステロール固体を同定した際、ギリシャ語の胆汁を表すChole-、固体を表すstereos (個体)に加え、アルコールの化学命名接尾辞である-olを付けたことに由来する。コレステールは、細胞膜、胆汁酸、ステロイドホルモン、ビタミンD前駆体等の原料となり、一部は食事から摂取されるが主に肝臓と小腸で合成される。細胞膜上のコレステロールに富む領域は、[[膜マイクロドメイン]]([[膜ミクロドメイン]][[脂質ラフト]])と呼ばれ、膜タンパク質の集積やシグナル伝達の場として注目されている。


 表に挙げるものがステロイドホルモン合成酵素であり、これらのうち、3β-HSDと17β-HSD以外はシトクロムP450である。どの酵素も[[小胞体]]膜か[[ミトコンドリア]]内膜のどちらかに局在する。
=== 胆汁酸  ===


{| alignment=left border="1" cellpadding="1" cellspacing="1"
[[Image:Cholic and deoxycholic.png|thumb|right|200px|コール酸とデオキシコール酸の構造]]胆汁酸(bile acid)は、胆汁に含まれるステロイド誘導体の総称である。ヒトの代表的な胆汁酸はコール酸やデオキシコール酸である。胆汁酸は、肝臓にて[[シトクロムP450]]の作用によるコレステロールの酸化により作られる。胆汁酸はグリシンやタウリンと結合して抱合体となり胆嚢に蓄積され、ビリルビンと共に胆汁として十二指腸に排出され、脂質の乳化を促進し、食物脂肪の吸収を助ける。
|+ '''表 ステロイドホルモン合成に関わる酵素'''
|-
| '''酵素名'''
| '''略称'''
|-
| [[wj:コレステロールモノオキシゲナーゼ (側鎖開裂)| コレステロール側鎖切断酵素]](cholesterole side chain cleavage)
| P450 scc
|-
| [[wj:3β-ヒドロキシ-Δ5-ステロイドデヒドロゲナーゼ|3β-ヒドキシステロイド脱水素酵素・異性化酵素]] (3β-hydroxysteroid dehydrogenase)
| 3β-HSD
|-
| [[wikipedia:CYP17A1|17α-水酸化・開裂酵素]] (17 α-hydoroxylase/17, 20 lyase)
| P450c17
|-
| [[wj:ステロイド-21-モノオキシゲナーゼ|21‐水酸化酵素]] (C21-hydroxylase)
| P450c21
|-
| [[wikipedia:Steroid 11-beta-hydroxylase|11β-水酸化酵素]] (11β-hydroxylase)
| P450c11
|-
| [[wikipedia:Aldosterone synthase|アルドステロン合成酵素]]または18-水酸化酵素 (aldosterone synthase or 18-hydroxylase)
| P450c18
|-
| [[wikipedia:Aromatase|アロマターゼ]] (aromatase)
| P450arom
|-
[[wj:3(or17)β-ヒドロキシステロイドデヒドロゲナーゼ|17β-ヒドキシステロイド脱水素酵素]]
| 17β-HSD
|}


===種類と作用===
<br>


====副腎皮質ホルモン====
=== ビタミンD  ===


 副腎皮質ホルモンは、[[鉱質コルチコイド]]と[[糖質コルチコイド]]の2種に大別される。鉱質コルチコイドには[[アルドステロン]]が含まれ、糖質コルチコイドには[[コルチゾール]]や[[コルチコステロン]]が含まれる。
[[Image:provitamin to vitamin.png|thumb|right|プロビタミンDのビタミンDへの返還]] ビタミンDは、ステロイド核のB環が9-10位の間で開環した構造を持つ。ビタミンDは側鎖構造の違いから、D2-D7に分けられるが、植物由来のD2と動物由来のD3は同様の生理活性を持つことから、両者を総称してビタミンDと呼ぶ。ビタミンDは肝臓と腎臓で代謝されて活性型ビタミンD(1,25-ジヒドロキシコレカルシフェロール)となり、腸管におけるカルシウムとリン酸の吸収や腎尿細管におけるカルシウムの再吸収を促進する。活性型ビタミンDの不足は小児ではくる病、成人では骨軟化症となる。


=====鉱質コルチコイド=====
<br>


 アルドステロンは[[wj:副腎皮質球状帯|副腎皮質球状帯]]で合成され、腎臓の[[wj:集合管|集合管]]に作用してナトリウムイオンの再吸収とカリウムイオンの排泄を促進する。ナトリウムイオンの再吸収によって[[wj:間質液|間質液]]の[[wj:浸透圧|浸透圧]]が上昇し水の再吸収も増加するため、体液量の調節にも重要な役割を果たす<ref name="ref1">坂井建雄、岡田隆夫<br>解剖生理学-人体の構造と機能-第7版3刷<br>医学書院:2007 </ref>。<br>
=== ステロイドホルモン  ===


=====糖質コルチコイド=====
ステロイド核をもつ[[ホルモン]]をステロイドホルモンと呼ぶ。副腎、精巣、卵巣等の内分泌器官より分泌され、血流を通じて全身の標的細胞に作用する。また、脳で合成されるステロイドをニューロステロイドと呼ぶ。


 [[コルチゾール]]([[コルチコステロン]])は[[wj:副腎皮質束状帯|副腎皮質束状帯]]と[[wj:副腎皮質網状帯|副腎皮質網状帯]]にて合成され、その作用は[[wj:糖代謝|糖代謝]]の調節、抗[[wj:炎症|炎症]]作用、[[中枢神経系]]を介した[[情動]]や[[認知機能]]に対する作用、抗[[ストレス]]作用など多岐にわたる。糖代謝に関しては、[[wj:糖新生|糖新生]]を促進して[[wj:血糖|血糖]]値を上昇させる。抗炎症作用においては3つの作用機序が考えられている。まずは、[[リソソーム]]膜の安定化によりタンパク質分解酵素の遊出を防ぐことによる炎症部位拡大の防御、次に[[wj:肥満細胞|肥満細胞]]による[[wj:ヒスタミン|ヒスタミン]]の放出を防ぎ、[[wj:毛細血管|毛細血管]]の透過性上昇を抑えることによる[[wj:浮腫|浮腫]]の軽減、最後に[[プロスタグランジン]]の合成を抑制することによる抗[[体温調節の神経機構|発熱]]・[[鎮痛]]作用である<ref name="ref1" />
<br>  


====精巣ホルモン====
== ステロイドホルモンの種類   ==


 精巣の[[wj:ライディッヒ細胞|ライディッヒ細胞]]から分泌されるアンドロゲンは[[男性ホルモン]]とも呼ばれ、雄性化作用を持つホルモンの総称であり、また女性ホルモンのひとつ、[[エストロゲン]]の前駆体でもある。生体内の主たるアンドロゲンは[[テストステロン]]である。テストステロン以外にも[[アンドロステンジオン]]や[[ジヒドロテストステロン]]もアンドロゲン作用を持つ。
===  副腎皮質ホルモン  ===


 アンドロゲンはタンパク質同化作用を持ち、男性の[[wj:二次性徴|二次性徴]]を促進するホルモンである。[[wj:骨格筋|骨格筋]]の発達促進に加え、体毛の発育促進、頭髪の減少、[[wj:皮脂腺|皮脂腺]]の発達、[[wj:精子|精子]]形成促進、[[wj:輸精管|輸精管]]・[[wj:前立腺|前立腺]]・[[wj:精嚢|精嚢]]・[[wj:カウパー腺|カウパー腺]]の維持等を担い、また、交尾等の[[生殖行動の神経回路|性行動]]もアンドロゲンによって促進される<ref name="ref1" />。
副腎皮質ホルモンは、[[糖質コルチコイド]][[鉱質コルチコイド]]の2種に大別され、前者の代表はコルチゾールとコルチコステロン、後者の代表はアルドステロンである。アルドステロンは副腎皮質球状帯で合成され、コルチゾール(コルチコステロン)は束状帯と網状帯にて合成される。鉱質コルチコイドは血中の塩濃度を調節し、糖質コルチコイドは糖代謝の調節の他、ストレスホルモンとしても知られている。束状帯と網状帯では少量のアンドロゲンが合成されるが、アンドロゲンは副腎皮質ホルモンに含めない場合が多い。


 アンドロゲンは脳の[[性分化]]にも重要なホルモンである。「アンドロゲンシャワー」と呼ばれる、周生期動物の[[wj:精巣|精巣]]から分泌される高濃度のアンドロゲン作用によって脳の雄性化と脱雌性化が起こり、脳の性分化の方向が決められる<ref name="kondo">近藤保彦、小川園子、菊水健史、山田一夫、富原一哉<br>脳とホルモンの行動学<br>西村書店:2010 </ref>。例えば、雄ラットの精巣を生後直後に摘出すると成熟後に雌特有の性行動を引き起こし、また出生一週間頃までの雌ラットにアンドロゲンを投与すると性成熟後も性周期は回帰せず無排卵となる。脳がアンドロゲンに対して高い感受性を示す時期は「脳の性分化の臨界期」と呼ばれる<ref name="kondo" />。
===  精巣ホルモン   ===


 テストステロンは、攻撃行動に深く関わるホルモンである。多くの動物種では、雌に比べて雄の攻撃性が高いことが知られ、また、精巣を除去するとテストステロンの減少と共に攻撃行動は低下するが、テストステロンの投与により攻撃行動の回復が見られる。
精巣のライディッヒ細胞から分泌されるアンドロゲンは雄性化作用を持つホルモンの総称である。アンドロゲンの90%はテストステロンであるが、アンドロステンジオンやデヒドロエピアンドロステロン等もアンドロゲンに含まれる。アンドロゲンは精子形成、輸精管・前立腺・精嚢・カウパー腺の維持の他、交尾などを含めた雄の性行動に重要であり、また攻撃行動などの社会行動にも関与している。雄では、周生期に大量のテストステロンが精巣から分泌され(アンドロゲンシャワーと呼ばれる)、このことにより性分化の方向性が決定される<ref>'''近藤保彦、小川園子、菊水健史、山田一夫、富原一哉'''<br>脳とホルモンの行動学 行動神経内分泌学への招待<br>''西村書店'':2010</ref>。


 テストステロンの作用経路は3種類存在し、テストステロンのまま[[アンドロゲン受容体]]に結合して作用する経路に加え、5α-リダクターゼによりジヒドロテストステロンに代謝され[[アンドロゲン受容体]]に結合する経路、さらに[[アロマターゼ]]により[[エストラジオール]]に転換されてから[[エストロゲン受容体]]に結合して作用する経路が挙げられる。程度の差はあるが、これら3種類の作用経路はどれも攻撃行動に関与する。近年、ノックアウトマウスを用いた攻撃行動解析が行われ、アロマターゼのノックアウトマウスでは、エストラジオールへの転換が起こらず血中テストステロン量が増大しているが、攻撃行動は出現しないこと<ref><pubmed>11182758</pubmed></ref>、アンドロゲン受容体やエストロゲンα受容体のノックアウトマウスでは、精巣除去前もしくは精巣除去後にテストステロンを投与してもほとんど攻撃行動を示さないことが報告されている<ref><pubmed>14747651</pubmed></ref><ref><pubmed>9037078</pubmed></ref><ref><pubmed> 9832445</pubmed></ref>。<br>
===  卵巣ホルモン   ===


====卵巣ホルモン====
卵巣から分泌されている女性ホルモンは、エストラジオール、エストロン、プロゲステロンである。ヒトの場合、下垂体ホルモンのLHとFSHが周期的に分泌されて女性ホルモンの生合成が促進される。プロゲステロンは炭素数21のステロイドで、ステロイドホルモンすべての中間代謝物でもある。哺乳類では妊娠を維持し、また交尾行動を抑制する。エストロゲンは炭素数18のステロイドホルモンでありアンドロゲンから生成される。エストロゲンはアンドロゲンのフェニル基A環の芳香化によって生成される。生物活性を持つエストロゲンは、17β-エストラジオール、エストロン、エストリオールである。内卵胞膜細胞で合成されたプロゲステロンから酵素の働きによりアンドロゲンが生成され、顆粒膜細胞内ですぐさまエストロゲンに変換される。雌の第二次性徴はエストロゲンにより影響を受ける。エストロゲンはヒトの水代謝に重要であり、水分の保持に役立っている。高濃度のエストロゲン存在下で骨形成が行われるため、閉経後の女性には骨粗鬆症の所見が見られる。さらにエストロゲンは、雌性行動、母性攻撃行動に重要な役割を果たしている。


 卵巣から分泌される女性ホルモンは、エストロゲン(卵胞ホルモン)と[[プロゲステロン]](黄体ホルモン)である。エストロゲンには、[[エストラジオール]]、[[エストロン]]、[[エストリオール]]の3種類が存在し、最も活性が高いのはエストラジオールである。<br>  
<br>  


 エストロゲンとプロゲステロンは、共同して[[wj:子宮|子宮]]に[[wj:月経周期|月経周期]]をもたらすと共に、[[wj:思春期|思春期]]における二次性徴の発現に関与する。エストロゲンは、[[wj:卵胞期|卵胞期]]の[[wj:子宮内膜|子宮内膜]]を増殖や卵胞の成長を促進する。妊娠中は子宮筋を肥大させ、子宮筋の興奮性を高める。思春期には[[wj:乳腺|乳腺]]の[[wj:乳管|乳管]]の成長を促進して乳房を大きくするとともに、[[wj:皮下脂肪|皮下脂肪]]の蓄積・[[wj:生殖器|生殖器]]の発育など、一次性徴と二次性徴を発現させて女性らしい体型にする。さらに[[wj:骨端|骨端]]の閉鎖をおこさせ、思春期以後の身長の伸びを抑制する。また、女性の性欲を亢進させ、[[生殖行動の神経回路|発情行動]]を引き起こす。プロゲステロンは、[[wj:排卵|排卵]]後に形成される[[wj:黄体|黄体]]から分泌される。妊娠中は[[wj:胎盤|胎盤]]からも分泌される。プロゲステロンの効果はエストロゲンがあらかいじめ作用している状態で発揮されることが多く、子宮では、子宮内膜を分泌期にして受精卵が着床しやすい状態にする。妊娠中は子宮筋の興奮性を抑え、妊娠を継続させるように作用する。乳房に対しては、乳腺の腺房の発達を刺激する。体温上昇作用があり、排卵後の基礎体温を上昇させる<ref name="ref1" />。
===  ニューロステロイド   ===


 エストロゲンは雌の性行動にも深く関与する。多くのげっ歯類では、[[生殖行動の神経回路|ロードーシス]]の発現は卵巣から分泌されるエストロゲンにより制御され、通常の性周期では、ロードーシス反射はエストロゲン分泌の高まる排卵前後でのみ起こる。また卵巣を摘出しても、通常のホルモン分泌パターンと類似させ、エストロゲンとプロゲステロンを連続的に投与すると雌はロードーシスを示す。エストロゲン受容体には[[wj:エストロゲン受容体#.E6.A0.B8.E5.86.85.E5.8F.97.E5.AE.B9.E4.BD.93|ERα]]と[[wj:エストロゲン受容体#.E6.A0.B8.E5.86.85.E5.8F.97.E5.AE.B9.E4.BD.93|ERβ]]の2種類が存在するが、ロードーシス反射に関与しているのは主にERαだと考えられている。ERα遺伝子を損傷したαERKOマウスの雌は、エストロゲンとプロゲステロンを投与しても全くロードーシスを示さない。一方ERβ遺伝子を欠損したERβKOマウスの雌は通常の性周期を示し、発情期には野生型の雌とほぼ同等のロードーシス反応を示す<ref><pubmed>10536018</pubmed></ref><ref><pubmed>9832446</pubmed></ref> 。<br>
ニューロステロイドとは脳で合成されるステロイドホルモンの総称である。脳は長年、末梢器官が合成・分泌するステロイドホルモンの標的器官として捉えられてきたが、1981年にフランスの内分泌学者Baulieuは、ラットの脳がコレステロールからプレグネノロンとデヒドロエピアンドロステロン(DHEA)を合成し硫酸や硫酸エステルに変換していることを見出し「ニューロステロイド」と命名した。現在では、脊椎動物のほとんどがニューロステロイドを合成していることが知られる。脳には、シトクロムP450sccに加え、ステロイド硫酸基転移酵素、3β-ヒドロキシステロイド脱水素酵素、5α(β)-還元酵素、17α-水酸化・開裂酵素、17β-水酸基脱水素酵素など、多くのステロイド合成酵素が存在することが証明され、脳は様々なニューロステロイドを合成していることが明らかとなった。ニューロステロイドは末梢内分泌器官を除去してもあまり変動しないことから、末梢内分泌器官とは独立したステロイド合成系を有していると考えられている。 脳は、末梢器官が合成・分泌するステロイドホルモンの標的器官でありながら、なおかつ脳自身もステロイドホルモンを合成することが知られる<ref><pubmed>19505496 </pubmed></ref>。生体におけるすべてのステロイド合成は、コレステロールからP450sccの触媒作用によりプレグネノロンに変換されることから始まるが、ほとんどの脊椎動物の脳においてもプレグネノロンが合成されていることが証明された。その後も脳には、シトクロムP450sccに加え、ステロイド硫酸基転移酵素、3β-ヒドロキシステロイド脱水素酵素、5α(β)-還元酵素、17α-水酸化・開裂酵素、17β-水酸基脱水素酵素など、多くのステロイド合成酵素が存在することが証明され、脳は様々なニューロステロイドを合成していることが明らかとなった。ニューロステロイドは末梢内分泌器官を除去してもあまり変動しないことから、末梢内分泌器官とは独立したステロイド合成系を有していると考えられている。 P450scc, 3β-HSDは、ニューロン、アストロサイト、オリゴデンドロサイトの全てに発現している。ほとんどの脳におけるプレグネノロン合成を証明し、脳によるステロイド合成は脊椎動物に広く見られることが明らかとなった。その後も脳には、シトクロムP450sccに加え、ステロイド硫酸基転移酵素、3β-ヒドロキシステロイド脱水素酵素、5α(β)-還元酵素、17α-水酸化・開裂酵素、17β-水酸基脱水素酵素など、多くのステロイド合成酵素が存在することが証明され、脳は様々なニューロステロイドを合成していることが明らかとなった。ニューロステロイドは末梢内分泌器官を除去してもあまり変動しないことから、末梢内分泌器官とは独立したステロイド合成系を有していると考えられている。


====ニューロステロイド====
<br>


 脳で合成されるステロイドをニューロステロイドと呼ぶ。ニューロステロイドの研究は、フランスの内分泌学者Baulieuが1981年にラットの脳にプレグネノロンと[[デヒドロエピアンドロステロン]](DHEA)を見出したことより始まり、現在では、[[wj:脊椎動物|脊椎動物]]のほとんどがニューロステロイドを合成していることが知られる<ref><pubmed>19505496 </pubmed></ref>。
== ステロイドホルモンの生合成  ==


 ニューロステロイドは、[[ニューロン]][[アストロサイト]][[オリゴデンドロサイト]]のすべての細胞種で合成されるが、発現するステロイド合成酵素の種類は細胞間で違いが見られる<ref><pubmed>10433246</pubmed></ref>。アストロサイトでは、P450scc, P450c17, 3βHSD, 17βHSD, P450aromを発現し、プレグネノロン、プロゲステロン、デヒドロエピアンドロステンジオン、アンドロゲン、エストロゲンを合成している。ニューロンもほぼアストロサイトと同様の合成酵素発現を示すが、17βHSDを持たずテストステロン合成を行わない点でアストロサイトと異なる。オリゴデンドロサイトはP450sccと3βHSDを発現し、プレグネノロンとプロゲステロンを合成する。
[[Image:Steroid synthesis.jpg|thumb|right|300px|ステロイドホルモンの生合成]] ステロイドホルモンはコレステロールから、主に[[シトクロムP450]]系酵素の働きによって作られる。これらの酵素は小胞体膜かミトコンドリア内膜のいずれかに局在する。以下に挙げる酵素がステロイドホルモン合成酵素として知られており、これらのうち3β-HSDと17β-HSD以外は[[シトクロムP450]]系酵素である。


 小脳プルキンエ細胞は、P450sccや3βHSD、[[wj:Steroid sulfotransferase|ステロイド硫酸基転移酵素]](HST)を発現しており、プレグネノロン、プレグネノロン硫酸エステル、プロゲステロン、[[プロゲステロン代謝ステロイド]](3α,5α-テトラハイドロプロゲステロン)を合成する<ref><pubmed> 10771104</pubmed></ref><ref><pubmed> 10373637</pubmed></ref>。 プロゲステロンは、新生児期の小脳において合成が活発となり、[[プルキンエ細胞]]の[[樹状突起]]伸長や[[スパイン]]形成を促進する<ref><pubmed>11487645</pubmed></ref> <ref><pubmed>11958856</pubmed></ref>。またプレグネノロン硫酸エステルは傍分泌により、プルキンエ細胞に投射する[[GABA]]ニューロンに作用し、GABAの[[放出頻度]]を増加させることが報告されている<ref><pubmed>10373637</pubmed></ref>。
<br> ・P450 scc:コレステロール側鎖切断酵素(cholesterole side chain cleavage)


===受容体と標的遺伝子===
・3β-HSD: 3β-ヒドキシステロイド脱水素酵素・異性化酵素 (3β-hydroxysteroid dehydrogenase)


 ステロイドホルモンの作用機序は大きく2つに分けられる。ひとつは[[核内受容体]]を介して標的遺伝子の発現調節を行うゲノミック作用であり、もうひとつは膜受容体を介した遺伝子発現調節を伴わず数分以内の速い作用が特徴のノンゲノミック作用である。
・P450c17: 17α-水酸化・開裂酵素(17 α-hydoroxylase/17, 20 lyase)


 核内受容体には、[[グルココルチコイド受容体]]([[GR]])、[[ミネラルコルチコイド受容体]]([[MR]])、[[アンドロゲン受容体]]([[AR]])、[[エストロゲン受容体]]([[ER&alpha;|ERα]]と[[ER&beta;|ERβ]])、[[プロゲステロン受容体]]([[PR]])があり、細胞質を通過したステロイドホルモンと複合体を形成して核へ移行し、標的遺伝子の[[ホルモン応答配列]]([[hormone response element]]: [[HRE]])に結合し転写調節を行う。しかし、これら核内受容体はゲノミック作用のみならず、細胞膜や細胞質にも存在することが確認されており、細胞質のセカンドメッセンジャー(PKA, PKC, MAPKや細胞内カルシウム等)に対してノンゲノミックな作用も有する。
・P450c21:21‐水酸化酵素(C21-hydroxylase)


 また近年、[[Gタンパク質共役型受容体]]([[G protein-coupled receptor]]: [[GPCR]])もステロイドホルモンの膜受容体として注目されている。
・P450-11β: 11β-水酸化酵素(11β-hydroxylase)


====エストロゲン受容体====
・P450c18: アルドステロン合成酵素


 エストロゲン受容体にはERαとERβとがあり、これらは独立した遺伝子から産生される(スプライシングバリアントではない)。ER受容体はリガンドフリーの状態でも核内に存在するが、リガンドと結合すると二量体を形成して標的遺伝子の[[転写調節領域]]に結合する。ERは[[エストロゲン応答配列]] ([[estrogen response element]]: [[ERE]])に直接に結合する以外にも、[[AP-1]]やc[[yclic AMP応答エレメント]]([[cyclic AMP-responsive element]], [[CRE]])様配列にも間接的に作用し遺伝子発現を調節することが知られる。
・P450arom: アロマターゼ(aromatase)


 ERの標的遺伝子としては[[プロラクチン]]、[[オボアルブミン]]、[[インスリン様成長因子-1]] ([[insulin-like growth factor-1]], [[IGF-1]])、プレセニリン-2 (trefoil factor 1, TFF-1/pS2)、[[カテプシン]]D、[[c-Myc]], [[cyclin D1]]等が知られる。エストロゲンによるプロラクチン遺伝子の発現調節はEREによるものであるが、オボアルブミンやIGF-1遺伝子の発現調節はAP-1によるものであることが報告されており、発現調節のメカニズムにおいては遺伝子ごとの詳細な解析が必要とされる。
・17β-HSD: 17β-ヒドキシステロイド脱水素酵素


 エストロゲン受容体のノンゲノミック作用はミリ秒から数分でおこり、従来のゲノミックな作用機序とは異なる。免疫電子顕微鏡の研究から従来のERαおよびERβが細胞膜や細胞質に分布し、[[視床下部]][[海馬]]の神経細胞では[[樹状突起]][[スパイン]][[軸索終末]]にも存在することが報告されている。特に、海馬神経細胞においてはエストロゲンのシグナル伝達に[[カベオリン]]タンパク質が重要な働きをしており、ERαおよびERβが膜に存在することを示唆している<ref><pubmed>18670908</pubmed></ref>。
<br> 炭素数27のコレステロールは、P450 sccの作用により、側鎖(炭素数6)が切断されてプレグネノロン(炭素数21)となる。この過程はホルモン分泌器官の間で共通したプロセスである。副腎では、最終的には炭素数の数は変化しないが、化学構造が変化を受けた[[糖質コルチコイド]]([[グルココルチコイド]])と[[鉱質コルチコイド]]([[ミネラルコルチコイド]])が、また精巣では炭素数が2個減少した[[アンドロゲン]](炭素数19)が、さらに卵巣では炭素数が1個減少した[[エストロゲン]](炭素数18)が生成される。


 一方、従来のERαやERβではなく、GPCRの1つである[[GPR30]]がノンゲノミック作用を示すことが報告されている。さらに、遺伝子は未だにクローニングされていないが、[[ER-X]]および[[Gq-coupled membrane ER]]([[Gq-mER]])などもエストロゲン膜受容体の可能性が示されている。これら膜受容体の作用機序としては、ERα、ERβおよびER-XはMAPK系を介して、またGPR30やGq-mERはGタンパク質を介して作用する。さらに、エストロゲンは[[NMDA型グルタミン酸受容体]]や[[AMPA型グルタミン酸受容体]]に作用することも報告されている<ref><pubmed>11744083</pubmed></ref>。
<br>
 
====アンドロゲン受容体====
 
 アンドロゲン受容体(AR)はGRなどと同様にリガンド非存在下では細胞質に存在し、リガンドと結合すると核へ移行し標的遺伝子の転写を調節する。ARの標的遺伝子には[[前立腺特異抗原]]([[prostate specific antigen]], [[PSA]])、[[線維芽細胞成長因子8]] ([[fibroblast growth factor 8]], [[FGF8]])、[[サイクリン依存性キナーゼ1]] (cyclin-dependent kinase 1. Cdk1), Cdk2, PMDPA1, [[transmembrane protease, serine 2]] (TMPRSS2)、[[D-dopachrome tautomerase]] (DDT)、[[グルタチオン-S-転位酵素&theta;2]] ([[glutathione S-transferase &theta;2]] ([[GSTT2]])、[[Ca2+/リン脂質依存性タンパク質リン酸化酵素|Ca<sup>2+</sup>/リン脂質依存性タンパク質リン酸化酵素]] (protein kinase C&delta;, PRKCD)、[[ピロリン-5-カルボン酸レダクターゼI]] ([[pyrroline-5-carboxylate reductase I]], [[PYXRI]])等が知られる。[[wj:哺乳動物|哺乳動物]]の[[中枢神経]]においては、これまでにアンドロゲンのノンゲノミック作用に直接関与するような膜型受容体は見つかっていない。
 
====プロゲステロン受容体====
 
 プロゲステロン受容体(PR)はPR-BとPR-Aの2つのアイソフォームが存在し、これらは同一遺伝子から産生され、PR-AはPR-BのN末端のアミノ酸が164個欠落したものである。PR-Bはリガンドの非存在下では細胞質と核の両方に分布するが、PR-Aはリガンド非存在下でも核内に局在し、いずれも標的遺伝子の転写を調節する。さらに、PR-Bは膜シグナル伝達分子である[[c-Src]]を代表とする[[Srcファミリーチロシンキナーゼ]] ([[Src family tyrosine kinase]], [[SFK]])と相互作用し、SFKを活性化することによりその下流の[[MAPK]]へシグナルを伝達することが報告されている<ref><pubmed>15242342</pubmed></ref>。
 
 標的遺伝子として、[[プロラクチン]]、[[Sox17]]<ref><pubmed>22638070</pubmed></ref>、[[interleukin-1 receptor type 1|interleukin (IL)-1 receptor type 1]], [[fibulin-1]], [[fibulin-2]], [[microsomal glutathione S-transferase 1|microsomal glutathione ''S''-transferase 1]], [[fumarylacetoacetate hydrolase]] <ref><pubmed>14503970</pubmed></ref>などが知られる。
 
''グルココルチコイドとその受容体に関しては[[グルココルチコイド]]の項目参照。''
 
[[Image:Cholesterol.png|thumb|right|300px|'''図3.コレステロールの構造''']]
[[Image:Cholic and deoxycholic.png|thumb|right|300px|'''図4.コール酸とデオキシコール酸の構造''']]
 
==コレステロール==
 コレステロールの分子式はC<sub>27</sub>H<sub>46</sub>Oで表わされ、ステロイド核の3位の炭素にヒドロキシル基がついたステロールを基礎骨格とし、17位の炭素はアルキル化されている。動物では、コレステールの一部は食事から摂取されるが、主に肝臓と小腸でアセチルCoAより合成され、血液を介して全身に運ばれ、ホルモンや胆汁酸の原料となる。また、コレステロールは、[[リン脂質]]と共に代表的な[[細胞膜]]の成分であり、コレステロールに富む膜領域は膜の流動性が低いことが知られる。細胞膜マイクロドメインとして知られる[[カベオラ]]や[[脂質ラフト]]は、コレステロールや[[スフィンゴミエリン]]に富んでおり、[[受容体]]タンパク質の集積や[[シグナル伝達]]が行われる場として研究が行われている。
 
==胆汁酸==
 
 胆汁酸(bile acid)は、[[wikipedia:ja:胆汁|胆汁]]に含まれるステロイド誘導体の総称であり、ヒトでは[[コール酸]]や[[デオキシコール酸]]がその代表である。胆汁酸は、[[wikipedia:ja:肝臓|肝臓]]にて[[シトクロムP450]]の作用によるコレステロールの酸化により合成される。胆汁酸は通常、[[グリシン]]や[[wikipedia:ja:タウリン|タウリン]]と結合して、グリココール酸(C<sub>26</sub>H<sub>43</sub>NO<sub>6</sub>)、やタウロコール酸(C26H45NO7S)等の抱合体として[[wikipedia:ja:胆嚢|胆嚢]]に蓄積され、[[wikipedia:ja:ビリルビン|ビリルビン]]と共に胆汁として[[wikipedia:ja:十二指腸|十二指腸]]に排出される。胆汁酸の主な役割は、[[wikipedia:ja:脂質|脂質]]の[[wikipedia:ja:乳化|乳化]]を促進し、食物脂肪の吸収を助けることである。
 
 
==ビタミンD==
[[Image:Provitamin to vitamin.png|thumb|right|400px|'''図5.プロビタミンからビタミンDへの変換''']]
 ビタミンDは、ステロイド核のB環が9-10位の間で開環した構造を持つ。ビタミンDは側鎖構造の違いから、D2([[wj:エルゴカルシフェロール|エルゴカルシフェロール]])とD3([[wj:コレカルシフェロール|コレカルシフェロール]])に分けられ、D2は植物に、D3は動物に多く含まれる。[[wj:アセチルCoA|アセチルCoA]]から合成されたプロビタミンD3([[wj:7-デヒドロコレステロール|7-デヒドロコレステロール]])となった後、[[wj:皮膚|皮膚]]上で[[wj:紫外線|紫外線]]によりステロイド核のB環が開きプレビタミンD3([[wj:(6Z)-タカルシオール|(6Z)-タカルシオール]])となる('''図5''')。プレビタミンD3は更に、ビタミンD3へと異性化する。
 
 ビタミンD自体は生理活性を持たないが、肝臓と腎臓にて3つのP450([[wj: CYP2R1|ビタミンD25-水酸化酵素]]、[[wj:カルシジオール-1-モノオキシゲナーゼ|ビタミンD1α-水酸化酵素]]、[[wikipedia:CYP24A1|ビタミンD24-水酸化酵素]])の働きにより活性型ビタミンD([[wj:1,25-ジヒドロキシコレカルシフェロール|1,25-ジヒドロキシコレカルシフェロール]])へと変換され、[[wj:ビタミンD受容体|ビタミンD受容体]]を介して[[wj:核|核]]内の標的遺伝子の転写活性を制御することによって作用を発揮する<ref name="takemori">'''武森重樹'''<br>ステロイドホルモン<br>''共立出版'', 1998 </ref>。標的遺伝子の1つとして[[カルシウム]]結合タンパク質である[[カルビンディン]]が挙げられる。
 
 ビタミンD受容体は[[wj:小腸|小腸]]、[[wj:腎臓|腎臓]]、[[wj:骨|骨]]組織に存在しておりカルシウム代謝と密接な関わりを持ち、腸管におけるカルシウムの吸収や[[wj:腎尿細管|腎尿細管]]におけるカルシウムの再吸収を促進する。活性型ビタミンDの不足は小児では[[wj:くる病|くる病]]、成人では[[wj:骨軟化症|骨軟化症]]となる。
 
== 関連項目==
*[[核内受容体]]
*[[シトクロムP450]]
*[[グルココルチコイド]]
 
== 参考文献 ==
 
<references/>

2012年3月16日 (金) 13:56時点における版

英語名:steroid 独:steroide 仏:stéroïdes  

ステロイドとは、分子中にステロイド核と称する骨格構造をもつ一連の有機化合物の総称である。ほとんどの動植物で生合成され、コレステロール、胆汁酸、ビタミンD、ステロイドホルモン等がその代表例である。


ステロイドの構造

 

ステロイド核の構造

  ステロイド核とは、シクロペンタノペルヒドロフェナントレン核のことを指し、3つのイス型六員環と1つの五員環がつながった構造をしている[1]。右図のように構造式を書いた場合、それぞれの環を左下から順にA環、B環、C環、D環と呼ぶ。一部あるいはすべての炭素が水素化され、通常はC-10とC-13にメチル基を、また多くの場合C-17にアルキル基を有する。生体物質としてのステロイドはC-3位がヒドロキシル化もしくはカルボニル化されたステロール類である。


 生体内ステロイド 

コレステロール

コレステロールの構造

コレステロールの分子式はC27H46Oで表わされ、ステロイド核の3位の炭素にOH基がついたステロールを基礎骨格とし、17位の炭素はアルキル化されている。その名称は、胆石からコレステロール固体を同定した際、ギリシャ語の胆汁を表すChole-、固体を表すstereos (個体)に加え、アルコールの化学命名接尾辞である-olを付けたことに由来する。コレステールは、細胞膜、胆汁酸、ステロイドホルモン、ビタミンD前駆体等の原料となり、一部は食事から摂取されるが主に肝臓と小腸で合成される。細胞膜上のコレステロールに富む領域は、膜マイクロドメイン(膜ミクロドメイン脂質ラフト)と呼ばれ、膜タンパク質の集積やシグナル伝達の場として注目されている。

胆汁酸

コール酸とデオキシコール酸の構造

胆汁酸(bile acid)は、胆汁に含まれるステロイド誘導体の総称である。ヒトの代表的な胆汁酸はコール酸やデオキシコール酸である。胆汁酸は、肝臓にてシトクロムP450の作用によるコレステロールの酸化により作られる。胆汁酸はグリシンやタウリンと結合して抱合体となり胆嚢に蓄積され、ビリルビンと共に胆汁として十二指腸に排出され、脂質の乳化を促進し、食物脂肪の吸収を助ける。


ビタミンD

プロビタミンDのビタミンDへの返還

ビタミンDは、ステロイド核のB環が9-10位の間で開環した構造を持つ。ビタミンDは側鎖構造の違いから、D2-D7に分けられるが、植物由来のD2と動物由来のD3は同様の生理活性を持つことから、両者を総称してビタミンDと呼ぶ。ビタミンDは肝臓と腎臓で代謝されて活性型ビタミンD(1,25-ジヒドロキシコレカルシフェロール)となり、腸管におけるカルシウムとリン酸の吸収や腎尿細管におけるカルシウムの再吸収を促進する。活性型ビタミンDの不足は小児ではくる病、成人では骨軟化症となる。


ステロイドホルモン

ステロイド核をもつホルモンをステロイドホルモンと呼ぶ。副腎、精巣、卵巣等の内分泌器官より分泌され、血流を通じて全身の標的細胞に作用する。また、脳で合成されるステロイドをニューロステロイドと呼ぶ。


ステロイドホルモンの種類 

 副腎皮質ホルモン

副腎皮質ホルモンは、糖質コルチコイド鉱質コルチコイドの2種に大別され、前者の代表はコルチゾールとコルチコステロン、後者の代表はアルドステロンである。アルドステロンは副腎皮質球状帯で合成され、コルチゾール(コルチコステロン)は束状帯と網状帯にて合成される。鉱質コルチコイドは血中の塩濃度を調節し、糖質コルチコイドは糖代謝の調節の他、ストレスホルモンとしても知られている。束状帯と網状帯では少量のアンドロゲンが合成されるが、アンドロゲンは副腎皮質ホルモンに含めない場合が多い。

 精巣ホルモン 

精巣のライディッヒ細胞から分泌されるアンドロゲンは雄性化作用を持つホルモンの総称である。アンドロゲンの90%はテストステロンであるが、アンドロステンジオンやデヒドロエピアンドロステロン等もアンドロゲンに含まれる。アンドロゲンは精子形成、輸精管・前立腺・精嚢・カウパー腺の維持の他、交尾などを含めた雄の性行動に重要であり、また攻撃行動などの社会行動にも関与している。雄では、周生期に大量のテストステロンが精巣から分泌され(アンドロゲンシャワーと呼ばれる)、このことにより性分化の方向性が決定される[2]

 卵巣ホルモン 

卵巣から分泌されている女性ホルモンは、エストラジオール、エストロン、プロゲステロンである。ヒトの場合、下垂体ホルモンのLHとFSHが周期的に分泌されて女性ホルモンの生合成が促進される。プロゲステロンは炭素数21のステロイドで、ステロイドホルモンすべての中間代謝物でもある。哺乳類では妊娠を維持し、また交尾行動を抑制する。エストロゲンは炭素数18のステロイドホルモンでありアンドロゲンから生成される。エストロゲンはアンドロゲンのフェニル基A環の芳香化によって生成される。生物活性を持つエストロゲンは、17β-エストラジオール、エストロン、エストリオールである。内卵胞膜細胞で合成されたプロゲステロンから酵素の働きによりアンドロゲンが生成され、顆粒膜細胞内ですぐさまエストロゲンに変換される。雌の第二次性徴はエストロゲンにより影響を受ける。エストロゲンはヒトの水代謝に重要であり、水分の保持に役立っている。高濃度のエストロゲン存在下で骨形成が行われるため、閉経後の女性には骨粗鬆症の所見が見られる。さらにエストロゲンは、雌性行動、母性攻撃行動に重要な役割を果たしている。


 ニューロステロイド 

ニューロステロイドとは脳で合成されるステロイドホルモンの総称である。脳は長年、末梢器官が合成・分泌するステロイドホルモンの標的器官として捉えられてきたが、1981年にフランスの内分泌学者Baulieuは、ラットの脳がコレステロールからプレグネノロンとデヒドロエピアンドロステロン(DHEA)を合成し硫酸や硫酸エステルに変換していることを見出し「ニューロステロイド」と命名した。現在では、脊椎動物のほとんどがニューロステロイドを合成していることが知られる。脳には、シトクロムP450sccに加え、ステロイド硫酸基転移酵素、3β-ヒドロキシステロイド脱水素酵素、5α(β)-還元酵素、17α-水酸化・開裂酵素、17β-水酸基脱水素酵素など、多くのステロイド合成酵素が存在することが証明され、脳は様々なニューロステロイドを合成していることが明らかとなった。ニューロステロイドは末梢内分泌器官を除去してもあまり変動しないことから、末梢内分泌器官とは独立したステロイド合成系を有していると考えられている。 脳は、末梢器官が合成・分泌するステロイドホルモンの標的器官でありながら、なおかつ脳自身もステロイドホルモンを合成することが知られる[3]。生体におけるすべてのステロイド合成は、コレステロールからP450sccの触媒作用によりプレグネノロンに変換されることから始まるが、ほとんどの脊椎動物の脳においてもプレグネノロンが合成されていることが証明された。その後も脳には、シトクロムP450sccに加え、ステロイド硫酸基転移酵素、3β-ヒドロキシステロイド脱水素酵素、5α(β)-還元酵素、17α-水酸化・開裂酵素、17β-水酸基脱水素酵素など、多くのステロイド合成酵素が存在することが証明され、脳は様々なニューロステロイドを合成していることが明らかとなった。ニューロステロイドは末梢内分泌器官を除去してもあまり変動しないことから、末梢内分泌器官とは独立したステロイド合成系を有していると考えられている。 P450scc, 3β-HSDは、ニューロン、アストロサイト、オリゴデンドロサイトの全てに発現している。ほとんどの脳におけるプレグネノロン合成を証明し、脳によるステロイド合成は脊椎動物に広く見られることが明らかとなった。その後も脳には、シトクロムP450sccに加え、ステロイド硫酸基転移酵素、3β-ヒドロキシステロイド脱水素酵素、5α(β)-還元酵素、17α-水酸化・開裂酵素、17β-水酸基脱水素酵素など、多くのステロイド合成酵素が存在することが証明され、脳は様々なニューロステロイドを合成していることが明らかとなった。ニューロステロイドは末梢内分泌器官を除去してもあまり変動しないことから、末梢内分泌器官とは独立したステロイド合成系を有していると考えられている。


ステロイドホルモンの生合成

ステロイドホルモンの生合成

ステロイドホルモンはコレステロールから、主にシトクロムP450系酵素の働きによって作られる。これらの酵素は小胞体膜かミトコンドリア内膜のいずれかに局在する。以下に挙げる酵素がステロイドホルモン合成酵素として知られており、これらのうち3β-HSDと17β-HSD以外はシトクロムP450系酵素である。


・P450 scc:コレステロール側鎖切断酵素(cholesterole side chain cleavage)

・3β-HSD: 3β-ヒドキシステロイド脱水素酵素・異性化酵素 (3β-hydroxysteroid dehydrogenase)

・P450c17: 17α-水酸化・開裂酵素(17 α-hydoroxylase/17, 20 lyase)

・P450c21:21‐水酸化酵素(C21-hydroxylase)

・P450-11β: 11β-水酸化酵素(11β-hydroxylase)

・P450c18: アルドステロン合成酵素

・P450arom: アロマターゼ(aromatase)

・17β-HSD: 17β-ヒドキシステロイド脱水素酵素


炭素数27のコレステロールは、P450 sccの作用により、側鎖(炭素数6)が切断されてプレグネノロン(炭素数21)となる。この過程はホルモン分泌器官の間で共通したプロセスである。副腎では、最終的には炭素数の数は変化しないが、化学構造が変化を受けた糖質コルチコイド(グルココルチコイド)と鉱質コルチコイド(ミネラルコルチコイド)が、また精巣では炭素数が2個減少したアンドロゲン(炭素数19)が、さらに卵巣では炭素数が1個減少したエストロゲン(炭素数18)が生成される。


  1. G. P. Moss (1989). "Nomenclature of Steroids (Recommendations 1989)". Pure & Appl. Chem. 61 (10): 1783–1822. doi:10.1351/pac198961101783. PDF
  2. 近藤保彦、小川園子、菊水健史、山田一夫、富原一哉
    脳とホルモンの行動学 行動神経内分泌学への招待
    西村書店:2010
  3. Do Rego, J.L., Seong, J.Y., Burel, D., Leprince, J., Luu-The, V., Tsutsui, K., ..., & Vaudry, H. (2009).
    Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Frontiers in neuroendocrinology, 30(3), 259-301. [PubMed:19505496] [WorldCat] [DOI]