「ショウジョウバエ」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
35行目: 35行目:
 [[wikipedia:ja:昆虫網|昆虫網]]、[[wikipedia:ja:双翅目|双翅目]]に属する[[wikipedia:ja:ショウジョウバエ科|ショウジョウバエ科]]には2000種以上の種が存在するが、このうち一般にショウジョウバエと呼ばれるものはショウジョウバエである。
 [[wikipedia:ja:昆虫網|昆虫網]]、[[wikipedia:ja:双翅目|双翅目]]に属する[[wikipedia:ja:ショウジョウバエ科|ショウジョウバエ科]]には2000種以上の種が存在するが、このうち一般にショウジョウバエと呼ばれるものはショウジョウバエである。


 [[wikipedia:ja:完全変態|完全変態]]昆虫で、摂氏25度では、胚期(1日)、1齢[[wj:幼虫|幼虫]]期(1日)、2齢幼虫期(1日)、3齢幼虫期(2日)、[[wj:蛹|蛹]]期(5日)を経て約10日で[[wj:成虫|成虫]]になる。体長が小さく(成虫で3mm)、飼育が容易で、世代期間が短いことから、遺伝学的解析に適している。また、遺伝的組換えを抑制する[[wikipedia:ja:バランサー染色体|バランサー染色体]]を用いて[[wj:突然変異体|突然変異体]]を安定に継代維持することができるのも大きな利点であ<ref name=ref01><pubmed></pubmed></ref>。神経細胞の数は幼虫で約1万、成虫で10万程度<ref name=ref02><pubmed></pubmed></ref> <ref name=ref03><pubmed></pubmed></ref>。
 [[wikipedia:ja:完全変態|完全変態]]昆虫で、摂氏25度では、胚期(1日)、1齢[[wj:幼虫|幼虫]]期(1日)、2齢幼虫期(1日)、3齢幼虫期(2日)、[[wj:蛹|蛹]]期(5日)を経て約10日で[[wj:成虫|成虫]]になる。体長が小さく(成虫で3mm)、飼育が容易で、世代期間が短いことから、遺伝学的解析に適している。また、遺伝的組換えを抑制する[[wikipedia:ja:バランサー染色体|バランサー染色体]]を用いて[[wj:突然変異体|突然変異体]]を安定に継代維持することができるのも大きな利点であ<ref name=ref01>'''Greenspan, RJ.''' <br>Fly Pushing: The Theory and Practice of Drosophila Genetics. <br>''Cold Spring Harbor Laboratory Press, New York.'' ISBN-13: 978-0879697112, ISBN-10: 0879697113 (2004).</ref>。神経細胞の数は幼虫で約1万、成虫で10万程度<ref name=ref02><pubmed> 25896325</pubmed></ref> <ref name=ref03><pubmed> 21129968</pubmed></ref>。


== よく用いられる遺伝学的手法 ==
== よく用いられる遺伝学的手法 ==
41行目: 41行目:


=== 機能欠失型変異 ===
=== 機能欠失型変異 ===
 古典的には、[[突然変異体]]の解析により遺伝子機能の解析が行われた。[[wikipedia:ja:クリスティアーネ・ニュスライン=フォルハルト|Nusslein-Volhard]]と[[wikipedia:ja:エリック・ヴィーシャウス|Wieschaus]]が行った胚発生に関わる遺伝子の系統的解析<ref name=ref04><pubmed></pubmed></ref>に代表されるように、X線や化学物質を用いて人工的に変異を誘導し、大量の変異体のなかから着目する表現型を示すものを探す[[順遺伝学的手法]](forward genetics)は[[動物]]発生や行動の解析において大きな威力を発揮した。
 古典的には、[[突然変異体]]の解析により遺伝子機能の解析が行われた。[[wikipedia:ja:クリスティアーネ・ニュスライン=フォルハルト|Nusslein-Volhard]]と[[wikipedia:ja:エリック・ヴィーシャウス|Wieschaus]]が行った胚発生に関わる遺伝子の系統的解析<ref name=ref04><pubmed>6776413</pubmed></ref>に代表されるように、X線や化学物質を用いて人工的に変異を誘導し、大量の変異体のなかから着目する表現型を示すものを探す[[順遺伝学的手法]](forward genetics)は[[動物]]発生や行動の解析において大きな威力を発揮した。


 1980年代初頭には[[トランスポゾン]][[P因子]]を用いることで、個体への遺伝子導入が可能になるとともに<ref name=ref05><pubmed></pubmed></ref>、突然変異の原因遺伝子のクローニングが一挙に進んだ<ref name=ref01 /> <ref name=ref06><pubmed></pubmed></ref>。さらに2000年頃に完了した[[wikipedia:ja:ゲノム|ゲノム]]解読後<ref name=ref07><pubmed></pubmed></ref>、P因子挿入部位のマッピングが進み、現在では60%以上の遺伝子についてデータベースを[[検索]]するだけでP因子挿入の変異体を得ることができる<ref name=ref06 /> <ref name=ref08><pubmed></pubmed></ref> [http://flybase.org]。さらに再転移法を用いて近傍のP因子から欠失変異体を得ることができるので、P因子を頼りに大多数の遺伝子の機能欠失体を得ることが可能となっている<ref name=ref06 /> <ref name=ref08 />。
 1980年代初頭には[[トランスポゾン]][[P因子]]を用いることで、個体への遺伝子導入が可能になるとともに<ref name=ref05><pubmed>6289436</pubmed></ref>、突然変異の原因遺伝子のクローニングが一挙に進んだ<ref name=ref01 /> <ref name=ref06><pubmed>15738961 </pubmed></ref>。さらに2000年頃に完了した[[wikipedia:ja:ゲノム|ゲノム]]解読後<ref name=ref07><pubmed>10731132</pubmed></ref>、P因子挿入部位のマッピングが進み、現在では60%以上の遺伝子についてデータベースを[[検索]]するだけでP因子挿入の変異体を得ることができる<ref name=ref06 /> <ref name=ref08><pubmed>24653003</pubmed></ref> [http://flybase.org]。さらに再転移法を用いて近傍のP因子から欠失変異体を得ることができるので、P因子を頼りに大多数の遺伝子の機能欠失体を得ることが可能となっている<ref name=ref06 /> <ref name=ref08 />。


 また、[[RNAi]]による遺伝子機能[[ノックダウン]]を可能にする系統(UAS-RNAi)もほとんどすべての遺伝子について利用可能である<ref name=ref06 /> <ref name=ref08 /> [http://www.flyrnai.org/up-torr/]。RNAiの場合、遺伝子機能を完全には阻害することができないという問題がある一方で、下記の[[Gal4-UASシステム]]と組み合わせることで、特定の細胞においてのみ遺伝子機能を阻害できるという利点がある<ref name=ref06 /> <ref name=ref08 /> <ref name=ref09><pubmed></pubmed></ref>。一方、[[マウス]]で用いられる[[相同組み替え]]のように特定の遺伝子を狙って欠失変異体を作成する手法は長年存在せず、遺伝学モデルとしての弱点のひとつであったが、組換え酵素[[FLP]]を利用して相同組換えを誘導する系がその後開発された<ref name=ref09 />。さらにごく最近では[[ゲノム編集]]を用いることで、より効率的に変異体を作成することが可能となっている<ref name=ref08 /> <ref name=ref010><pubmed></pubmed></ref>。
 また、[[RNAi]]による遺伝子機能[[ノックダウン]]を可能にする系統(UAS-RNAi)もほとんどすべての遺伝子について利用可能である<ref name=ref06 /> <ref name=ref08 /> [http://www.flyrnai.org/up-torr/]。RNAiの場合、遺伝子機能を完全には阻害することができないという問題がある一方で、下記の[[Gal4-UASシステム]]と組み合わせることで、特定の細胞においてのみ遺伝子機能を阻害できるという利点がある<ref name=ref06 /> <ref name=ref08 /> <ref name=ref09><pubmed>22017985 </pubmed></ref>。一方、[[マウス]]で用いられる[[相同組み替え]]のように特定の遺伝子を狙って欠失変異体を作成する手法は長年存在せず、遺伝学モデルとしての弱点のひとつであったが、組換え酵素[[FLP]]を利用して相同組換えを誘導する系がその後開発された<ref name=ref09 />。さらにごく最近では[[ゲノム編集]]を用いることで、より効率的に変異体を作成することが可能となっている<ref name=ref08 /> <ref name=ref010><pubmed>24002648 </pubmed></ref>。


=== 機能獲得型変異 ===
=== 機能獲得型変異 ===
65行目: 65行目:


=== 機能生理学 ===
=== 機能生理学 ===
 Benzerらの行動スクリーニングはまた[[イオンチャネル]]などの生理機能分子の同定にもつながった。例えば、[[Shaker]]変異は最初の[[カリウムチャネル]]のクローニングにつながった。同様に[[TRPチャネル]]もショウジョウバエでの研究から発見されたものである(以上の[[ショウジョウバエ#神経科学における代表的研究|神経科学における代表的研究]]に関する文献については優れた総説<ref name=ref011><pubmed></pubmed></ref>を参照されたい)。
 Benzerらの行動スクリーニングはまた[[イオンチャネル]]などの生理機能分子の同定にもつながった。例えば、[[Shaker]]変異は最初の[[カリウムチャネル]]のクローニングにつながった。同様に[[TRPチャネル]]もショウジョウバエでの研究から発見されたものである(以上の[[ショウジョウバエ#神経科学における代表的研究|神経科学における代表的研究]]に関する文献については優れた総説<ref name=ref011><pubmed>20383202</pubmed></ref>を参照されたい)。


== 最近の研究動向 ==
== 最近の研究動向 ==
 米国の[[wikipedia:Janelia Research Campus|Janelia研究所]]を中心に単一の神経細胞種において特異的に発現を誘導するGal4系統が拡充されており、大量のGal4系統を用いた解剖学的脳マッピングが進行している([http://flweb.janelia.org/cgi-bin/flew.cgi])。また[[オプトジェネティクス]]を用い、特定の神経細胞の活動を促進もしくは阻害したときの動物行動や回路の挙動への影響を調べる研究も盛んに行われている<ref name=ref011 /> <ref name=ref012><pubmed></pubmed></ref>。成虫の脳部位や幼虫の全[[中枢神経系]]において、[[コネクトミクス]]解析(連続[[切片]]電子顕微鏡画像三次元再構築)による回路構造決定のプロジェクトも進行している<ref name=ref02 /> <ref name=ref013><pubmed></pubmed></ref>。[[カルシウムイメージング]]や[[パッチクランプ法]]を用いて神経活動を測定する研究も急増している <ref name=ref011 /> <ref name=ref012 />。
 米国の[[wikipedia:Janelia Research Campus|Janelia研究所]]を中心に単一の神経細胞種において特異的に発現を誘導するGal4系統が拡充されており、大量のGal4系統を用いた解剖学的脳マッピングが進行している([http://flweb.janelia.org/cgi-bin/flew.cgi])。また[[オプトジェネティクス]]を用い、特定の神経細胞の活動を促進もしくは阻害したときの動物行動や回路の挙動への影響を調べる研究も盛んに行われている<ref name=ref011 /> <ref name=ref012><pubmed>22285110 </pubmed></ref>。成虫の脳部位や幼虫の全[[中枢神経系]]において、[[コネクトミクス]]解析(連続[[切片]]電子顕微鏡画像三次元再構築)による回路構造決定のプロジェクトも進行している<ref name=ref02 /> <ref name=ref013><pubmed>23925240 </pubmed></ref>。[[カルシウムイメージング]]や[[パッチクランプ法]]を用いて神経活動を測定する研究も急増している <ref name=ref011 /> <ref name=ref012 />。


 以上のような革新的技術を組み合わせて、感覚情報処理、記憶学習や行動制御の仕組みを回路レベルで理解しようとするシステム神経科学が急ピッチで展開している。また、[[アルツハイマー病]]や[[パーキンソン病]]などの[[モデル動物]]が作成されるなど、[[精神神経疾患]]のハイスループットモデル系としても活用されている<ref name=ref014><pubmed></pubmed></ref>。
 以上のような革新的技術を組み合わせて、感覚情報処理、記憶学習や行動制御の仕組みを回路レベルで理解しようとするシステム神経科学が急ピッチで展開している。また、[[アルツハイマー病]]や[[パーキンソン病]]などの[[モデル動物]]が作成されるなど、[[精神神経疾患]]のハイスループットモデル系としても活用されている<ref name=ref014><pubmed>21415126</pubmed></ref>。


== 外部リンク ==
== 外部リンク ==
85行目: 85行目:
==参考文献==
==参考文献==
<references />
<references />
:2. 神経科学研究において用いられる遺伝学的手法について<pubmed>22017985</pubmed>
:3. 神経科学における代表的研究について<br><pubmed>20383202</pubmed>
:4. オプトジェネティクスなどの新技術を用いた行動解析について<br><pubmed> 22285110 </pubmed>