「神経前駆細胞」の版間の差分

提供:脳科学辞典
ナビゲーションに移動 検索に移動
編集の要約なし
編集の要約なし
(2人の利用者による、間の34版が非表示)
1行目: 1行目:
<div align="right"> 
英語名:neural progenitor cell
<font size="+1">[http://researchmap.jp/read0193133 水谷健一]</font><br>
''神戸学院大学大学院 薬学研究科 幹細胞生物学研究室''<br>
DOI:<selfdoi /> 原稿受付日:2017年4月6日 原稿完成日:2017年4月17日<br>
担当編集委員:[http://researchmap.jp/fujiomurakami 村上 富士夫](大阪大学 大学院生命機能研究科)<br>
</div>


英語名:neural progenitor cell 独:neurale Vorläuferzellen 仏:cellule neuronale progénitrice


{{box|text= 神経前駆細胞とは、神経系の未分化細胞であり、限られた分裂回数の後に分化を遂げるように運命付けられた細胞を指す。たとえば、大脳皮質を構成するグルタミン作動性の神経細胞は、未分化型前駆細胞、中間型前駆細胞、およびoRG前駆細胞といった、形態および機能が異なる少なくとも3つの前駆細胞('''図''')から生み出されると考えられている。ここでは、各々の前駆細胞の相違点を最近の研究報告を含めて概説する。<u></u>}}
神経前駆細胞とは、神経系の未分化細胞であり、限られた分裂回数の後に分化を遂げるように運命付けられた細胞を指す。


== 神経前駆細胞とは ==
[[ファイル: Fig.2c.pdf|500px|thumb|right|'''図. 形態が異なる複数の前駆細胞が、大脳皮質のグルタミン作動性神経細胞を生み出す'''<br>発生期の大脳皮質には、脳室面で分裂する未分化型前駆細胞、および非脳室面で分裂する中間型前駆細胞とoRG前駆細胞が存在することが知られている。]]
 複雑な[[大脳皮質]]は[[哺乳類]]の[[脳]]の最大の特徴とされるが、これは複数の神経前駆細胞が多様な神経細胞を産生した結果である。すなわち、発生期における大脳皮質(終脳背側)の[[神経上皮]]に生じた[[神経幹細胞]]が分裂して数を増やし、やがて[[未分化型前駆細胞]]([[放射状グリア細胞]]あるいはapical progenitor<u></u>)、[[中間型前駆細胞]](basal progenitorあるいはintermediate progenitor)<u></u>、および[[oRG前駆細胞]](OSVZ (outer subventricular zone) radial glia-like cell)などの各々の前駆細胞が出現するが、これらの細胞は異なる分裂・分化能力を有し、固有の役割を担う結果として、組織における複雑な細胞構築が可能となる <ref name=ref1><pubmed> 21036598 </pubmed></ref>。


 これらの前駆細胞は、いずれも[[グルタミン酸]]作動性の神経細胞の発生に寄与していると考えられているが、明確な形態的・機能的な違いが観察される('''''')。まず、未分化型前駆細胞は生み出した細胞をロコモーションと呼ばれる移動様式で放射状突起を伝って皮質板に移動する一方で、中間型前駆細胞は脳室下帯近傍で多極性細胞(複数の突起を有する細胞)に形態を大きく変化することが知られている。また、oRG前駆細胞は基底膜方向にのみ一本の細胞突起を持つことを特徴とし、主に高等哺乳類のOSVZ([[外側脳室下帯]])に存在し、非対称分裂により神経細胞を生み出す。
<big>'''
== 目次 ==
'''</big>
*  神経前駆細胞とは
* 未分化型前駆細胞と中間型幹細胞
* 未分化型前駆細胞と中間型幹細胞を特徴付ける分子機構
* 多極性形態細胞
* oRG細胞
*  関連項目
*  参考文献


 こうした前駆細胞における分裂・分化の極めて小さなバランスの変化は、最終的な脳のサイズに対して決定的な影響を及ぼすことが指摘されており <ref name=ref2><pubmed> 7482803 </pubmed></ref>、例えば、[[β-カテニン]]の[[トランスジェニックマウス]]の大脳皮質では、未分化型前駆細胞の増殖性が2倍程度亢進することによって、極端な皮質表面積の拡大が確認されている<ref name=ref3><pubmed> 12130776 </pubmed></ref>。


== 未分化型前駆細胞と中間型前駆細胞 ==
<big>'''
== 神経前駆細胞とは ==
'''</big>
 複雑な大脳皮質は哺乳類の脳の最大の特徴とされるが、これは複数の神経前駆細胞によって多様な神経細胞が産生された結果であることが近年の研究で明らかになりつつある。すなわち、神経上皮に生じた神経幹細胞が分裂して数を増やし、やがて未分化型前駆細胞(radial gliaあるいはapical progenitor)、中間型前駆細胞(basal progenitorあるいはintermediate progenitor)、oRG細胞(OSVZ radial glia-like cell)などの各々の前駆細胞が出現するが、これら異なる分裂・分化能力を有することで、固有の役割を担う結果として脳組織における細胞構築が可能となると考えられている[1]。実際、前駆細胞における分裂・分化の極めて小さなバランスの変化が最終的な脳のサイズに対して決定的な影響を及ぼすことが指摘されており[2]、例えば、β-cateninのトランスジェニックマウスの大脳皮質では未分化型前駆細胞の増殖性が2倍程度亢進することによって、極端な皮質表面積の拡大が確認されている[3]。


 哺乳類の[[胎生期]]大脳皮質の神経発生過程においては、未分化型前駆細胞が[[脳室帯]]のapical面(頂端面)において自己複製を伴う非対称分裂を行い<ref name=ref4><pubmed> 11567613 </pubmed></ref><ref name=ref5><pubmed> 15175243 </pubmed></ref><ref name=ref6><pubmed> 18084280 </pubmed></ref>、将来の神経細胞もしくは[[中間型前駆細胞]]を生じる('''図''')。つまり、未分化型前駆細胞こそが神経幹細胞と同義的に扱える細胞であると言える。


 一方、中間型前駆細胞は限られた分化ポテンシャルを持ち、主に脳室帯のbasal側(基底側)である[[脳室下帯]]で1〜3回程度の対称分裂によって神経細胞だけを生じる[[一過性前駆細胞]](“[[neurogenic transient amplifying cells]]”)の一種と考えられている<ref name=ref7><pubmed> 14703572 </pubmed></ref>。
<big>'''
== 未分化型前駆細胞と中間型幹細胞 ==
'''</big>
 哺乳類の胎生期大脳皮質の神経発生過程においては、放射状グリア細胞が脳室帯のapical面において自己複製を伴う非対称分裂を行い[4,5]、将来の神経細胞もしくは中間型前駆細胞を生じる。この中間型前駆細胞は限られた分化ポテンシャルを持ち、主に脳室帯のbasal側である脳室下帯で1〜3回程度の対称分裂によって神経細胞だけを生じる“neurogenic transient amplifying cells”の一種と考えられている[6]。この中間型前駆細胞は、大脳皮質の層形成、領野形成の構築に重要な役割を担う可能性が近年指摘されている。たとえば、“upper layer hypothesis”[7]では、中間型前駆細胞が大脳皮質発生初期に上層の神経細胞の発生に運命決定に寄与する可能性が報告されている[8,9]。また、“intermediate progenitor hypothesis”では、進化に伴う中間型前駆細胞の増殖性亢進が霊長類における大脳皮質表面積の拡大に寄与する可能性が指摘されている[10]。実際中間型幹細胞の分子マーカーであるTbr2(T-box brain protein 2)のヒトにおける変異は、大脳皮質形成不全との関連性が指摘されており[11]、大脳皮質の細胞構築における中間型前駆細胞の役割に興味が持たれる。一方、中間型前駆細胞は脳室下帯が形成される以前に出現し、発生期全体を通して豊富に存在するとの報告もあり[12]、実際に、定量的な解析においては上層の神経細胞ばかりでなく、下層の神経細胞の大多数(50〜95%)が中間型前駆細胞に由来すると指摘されている[13]。これらの知見は、領域・時期特異的に異なる性質に制限された中間型前駆細胞が、各々のradial unitから神経細胞の産生を指数関数的に増幅し、これが広範な大脳皮質発生に寄与留守可能性を示唆するものである。


 この中間型前駆細胞は、大脳皮質の層形成、[[領野]]形成の構築に重要な役割を担うとされている。たとえば、“upper layer hypothesis”<ref name=ref8><pubmed> 7076556</pubmed></ref>では、中間型前駆細胞が大脳皮質発生後期に上層の神経細胞の発生の運命決定に寄与する可能性が報告されている<ref name=ref9><pubmed> 11493521 </pubmed></ref><ref name=ref10><pubmed> 15238450 </pubmed></ref>。


 また、“[[intermediate progenitor hypothesis]]”では、進化に伴う中間型前駆細胞の増殖性亢進が[[霊長類]]における大脳皮質表面積の拡大に寄与する可能性が指摘されている<ref name=ref11><pubmed> 17033683 </pubmed></ref>。実際、中間型前駆細胞の分子マーカーである[[T-box brain protein 2]] ([[Tbr2]])のヒトにおける変異は、[[大脳皮質形成不全]]との関連性が指摘されており<ref name=ref12><pubmed> 17353897 </pubmed></ref>、大脳皮質の細胞構築における中間型前駆細胞の役割に興味が持たれる。
<big>'''
== 未分化型前駆細胞と中間型幹細胞を特徴付ける分子機構 ==
'''</big>
 それでは、脳室面で分裂する未分化型前駆細胞と非脳室面で分裂する中間型前駆細胞の運命はどのように決定付けられるのであろうか?未分化型神経前駆細胞の維持・増殖にはNotchシグナルが重要な役割を果たしていることが知られている[14]。このNotchシグナルをHes1の強制発現によって活性化すると、中間型前駆細胞の分子マーカー(Tbr2など)の発現が抑制すること[15]、中間型前駆細胞は減弱したNotchシグナルを利用していること[16]から、Notchシグナルの変化が未分化前駆細胞から中間型前駆細胞への推移に寄与している可能性がある。また、Fringe等による糖鎖修飾あるいは細胞内カルシウム濃度がNotchシグナルの調節に関与する可能性が近年報告されているが、未分化型前駆細胞はbFGFによって細胞内カルシウム濃度が上昇するのに対して、EGF刺激では同様のことが観察されない一方で、中間型前駆細胞やグリア前駆細胞はbFGFおよびEGFいずれによっても細胞内カルシウム濃度の上昇が確認されている[17]。すなわち、脳室下帯に位置する中間型前駆細胞はEGF反応性が高いことからも、細胞内カルシウム濃度の調節が未分化型前駆細胞から中間型前駆細胞への推移に関与している可能性も示唆される。


 しかしながら、中間型前駆細胞は脳室下帯が形成される以前に出現し、発生期全体を通して豊富に存在するとの報告もあり<ref name=ref13><pubmed> 16284248 </pubmed></ref>、定量的な解析においては上層の神経細胞ばかりでなく、深層の神経細胞の大多数(50〜95%)が中間型前駆細胞に由来すると指摘されている<ref name=ref14><pubmed> 14963232 </pubmed></ref>。


 これらの知見は、領域・時期特異的に異なる性質に制限された中間型前駆細胞が、各々のradial unit(大脳皮質には80個程度の神経細胞で構成されるミニ円柱構造と呼ばれる最小単位の局所神経回路が存在するとされており、単位毎の神経回路が多数並列的に集合体を形成することで、神経回路が形成される)から神経細胞の産生を指数関数的に増幅し、これが広範な大脳皮質発生に寄与する可能性を示唆するものである。
<big>'''
== 多極性形態細胞 ==
'''</big>
 一方、最近の研究で、未分化型前駆細胞から生み出された未成熟な細胞(将来の神経細胞)は、分化過程において脳室下帯および中間帯において多極性形態(多数の突起を持つ)細胞へとその形態を大きく変化させることが見出されている[6,18]。このとき、未分化型前駆細胞が生み出した未成熟な細胞は、中間型幹細胞を経て多極性形態へと変化する細胞系譜と、中間型前駆細胞にならずに多極性細胞へと変化する細胞系譜が観察されている[19]。また、最近の研究で、未分化型前駆細胞から中間型前駆細胞や多極性細胞へと変化する際には、ミトコンドリア局在型の活性酸素種の量が大きく減少することが見出されており[20]、細胞内の代謝状態の変化が前駆細胞の推移と密接に関与し、これが大脳皮質の発生に決定的な役割を果たす可能性がある。実際、こうした未分化型前駆細胞から中間型前駆細胞および多極性細胞への推移が上手く進行しないと、大脳皮質の層形成に大きな影響を及ぼすことが報告されている[20,21,22]。


=== 未分化型前駆細胞と中間型前駆細胞を特徴付ける分子機構 ===
 それでは、脳室面で分裂する未分化型前駆細胞と非脳室面で分裂する中間型前駆細胞の運命は、どのように決定付けられるのであろうか?


 未分化型前駆細胞の維持・増殖には[[Notch]]シグナルが重要な役割を果たすことが知られている<ref name=ref15><pubmed> 11937492</pubmed></ref>。未分化型前駆細胞において、このNotchシグナルを[[Hes1]]の強制発現によって活性化すると、中間型前駆細胞の分子マーカー(Tbr2など)の発現を抑制すること<ref name=ref16><pubmed> 18400163</pubmed></ref>、未分化型前駆細胞が強いNotchシグナルを利用するのに対して、中間型前駆細胞は減弱したNotchシグナルを利用すること<ref name=ref17><pubmed> 17721509</pubmed></ref>から、Notchシグナルの変化が未分化型前駆細胞から中間型前駆細胞への推移に寄与している可能性がある。<br />
<big>'''
== oRG細胞 ==
'''</big>
 さらには最近の研究から、ヒトなどの高等哺乳類の胎生期大脳皮質の外側脳室下帯には神経細胞を生み出す前駆細胞が存在することが明らかになった[1,23,24]。この前駆細胞はoRG細胞とよばれ、基底膜方向にのみ一本の細胞突起を持つことを特徴とし、非対称分裂をおこなうことが明らかとなっている。今後、個々の前駆細胞が果たす役割が明確化されることで、大脳皮質の発生機構に重要な知見が見出されることが期待される。


== 多極性細胞 ==
 最近の研究で、未分化型前駆細胞から生み出された未成熟な細胞(脳室帯を離れて皮質板へと移動を開始した直後の細胞)は、分化過程において脳室下帯や中間帯で多極性形態(多数の突起を持つ)細胞へとその形態を大きく変化させることが見出されており<ref name=ref18><pubmed> 14602813</pubmed></ref>、中間型前駆細胞の中には多極性形態を示す細胞が観察される。


 この多極性細胞は、多数の突起を様々な方向に伸ばし、その突起を活発に伸縮させながら移動と滞留を繰り返し、全体としてはゆっくりと[[皮質板]]へと向かうが、このときの細胞移動は放射状突起を使わないとされている。
<big>'''
== 関連項目 ==
'''</big>
・未分化型前駆細胞<br />
・中間型前駆細胞<br />
・oRG細胞<br />
・radial glia<br />
・apical progenitor<br />
・basal progenitor<br />
・intermediate progenitor<br />
・OSVZ radial glia-like cell<br />
・多極性細胞<br />
・大脳皮質の発生<br />


 最近の研究では、未分化型前駆細胞が生み出した未成熟な細胞は、Tbr2陽性の中間型前駆細胞を経て[[NeuroD1]]を発現する多極性形態へと変化する[[細胞系譜]]と、Tbr2陽性細胞にならずに直接、NeuroD1陽性の多極性細胞へと変化する細胞系譜が観察されている<ref name=ref19><pubmed> 19150920</pubmed></ref>。


 つまり、多極性細胞へ変化するタイミングの異なる2つの細胞系譜が存在することを意味しており、この違いが皮質板へと進入するタイミングの多様性を生むことで、異なる層を構成する神経細胞へと分化する可能性が示唆される。
<big>'''
== 参考文献 ==
'''</big>


 さらには、未分化型前駆細胞が生み出した細胞が多極性細胞へと変化する際には、[[ミトコンドリア]]局在型の[[活性酸素]]種の量が大きく減少することが見出されており、実際、多極性細胞のマーカーであるNeuroD1の転写活性は活性酸素種の量に依存して変化することが確認されていることから<ref name=ref20><pubmed> 27993981</pubmed></ref>、細胞内の代謝状態の変化が前駆細胞の推移に関与する可能性がある。さらには、未成熟な細胞と考えられている多極性細胞は、未だ細胞運命が決定されていない細胞が含まれている可能性が指摘されている<ref name=ref21><pubmed> 22726835</pubmed></ref>
[1] Fietz SA, Huttner WB. Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr Opin Neurobiol. 2011;21(1):23-35. PMID: 21036598<br />
 
[2] Rakic P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 1995;18(9):383-8. PMID: 7482803<br />
 実際、こうした未分化型前駆細胞から中間型前駆細胞および多極性細胞への推移が上手く進行しないと、神経分化に決定的な異常を生じ、大脳皮質における層形成の異常を示すことが報告されている<ref name=ref22><pubmed> 23395638</pubmed></ref>]。また。最近の研究では、移動する多極性細胞はサブプレート層で一旦停止し、この際にサブプレートニューロンから伝達されるシグナルによって細胞の性質が変化することが、双極性細胞への変化に決定的な役割を果たすことが報告されている<ref name=ref23><pubmed> 29674592</pubmed></ref>
[3] Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science. 2002;297(5580):365-9. PMID: 12130776<br />
 
[4] Miyata T, Kawaguchi A, Okano H, Ogawa M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron. 2001;31(5):727-41. PMID: 11567613<br />
== oRG前駆細胞 ==
[5] Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development. 2004;131(13):3133-45. PMID: 15175243<br />
 さらに最近の研究から、[[ヒト]]などの高等哺乳類の胎生期大脳皮質の外側脳室下帯には、神経細胞を生み出す「新たな前駆細胞」が存在することが明らかになっている<ref name=ref24><pubmed> 20154730</pubmed></ref><ref name=ref25><pubmed> 20436478</pubmed></ref>。この前駆細胞はoRG前駆細胞とよばれ、非脳室面で非対称分裂を行い、[[霊長類]]ばかりでなく[[齧歯類]]においても少なからず存在していることが確認されている<ref name=ref26><pubmed> 21389223 </pubmed></ref>
[6] Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci. 2004 Feb;7(2):136-44. PMID: 14703572<br />
 
[7] Smart IH, Smart M. Growth patterns in the lateral wall of the mouse telencephalon: I. Autoradiographic studies of the histogenesis of the isocortex and adjacent areas. J Anat. 1982;134(Pt 2):273-98. PMID: 7076556<br />
 今後、これらの個々の前駆細胞が果たす役割が明らかになることで、大脳皮質の発生を制御する分子機構が明確化されることが期待される。
[8] Tarabykin V, Stoykova A, Usman N, Gruss P. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development. 2001;128(11):1983-93. PMID: 11493521<br />
 
[9] Zimmer C, Tiveron MC, Bodmer R, Cremer H. Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb Cortex. 2004;14(12):1408-20. PMID: 15238450<br />
== 関連項目 ==
[10] Kriegstein A, Noctor S, Martínez-Cerdeño V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci. 2006;7(11):883-90. PMID: 17033683<br />
* [[神経幹細胞]]
[11] Baala L, Briault S, Etchevers HC, Laumonnier F, Natiq A, Amiel J, Boddaert N, Picard C, Sbiti A, Asermouh A, Attié-Bitach T, Encha-Razavi F, Munnich A, Sefiani A, Lyonnet S. Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis. Nat Genet. 2007;39(4):454-6. PMID: 17353897<br />
* [[未分化型前駆細胞]]
[12] Wu SX, Goebbels S, Nakamura K, Nakamura K, Kometani K, Minato N, Kaneko T, Nave KA, Tamamaki N. Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc Natl Acad Sci U S A. 2005;102(47):17172-7. PMID: 16284248<br />
* [[中間型前駆細胞]]
[13] Haubensak W, Attardo A, Denk W, Huttner WB. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci U S A. 2004;101(9):3196-201. PMID: 14963232<br />
* [[oRG前駆細胞]]
[14] Hitoshi S, Alexson T, Tropepe V, Donoviel D, Elia AJ, Nye JS, Conlon RA, Mak TW, Bernstein A, van der Kooy D. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 2002;16(7):846-58. PMID: 11937492<br />
* [[放射状突起]]
[15] Shimojo H, Ohtsuka T, Kageyama R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron. 2008;58(1):52-64. PMID: 18400163<br />
* [[脳室面分裂細胞]]
[16] Mizutani K, Yoon K, Dang L, Tokunaga A, Gaiano N. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature. 2007;449(7160):351-5. PMID: 17721509<br />
* [[非脳室面分裂細胞]]
[17] Maric D, Maric I, Chang YH, Barker JL. Prospective cell sorting of embryonic rat neural stem cells and neuronal and glial progenitors reveals selective effects of basic fibroblast growth factor and epidermal growth factor on self-renewal and differentiation. J Neurosci. 2003 Jan 1;23(1):240-51. PMID: 12514221<br />
* [[Notch]]
[18] Tabata H1, Nakajima K. Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci. 2003;23(31):9996-10001. PMID: 14602813<br />
* [[Tbr2]]
[19] Tabata H1, Kanatani S, Nakajima K. Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex. Cereb Cortex. 2009;19(9):2092-105. PMID: 19150920<br />
* [[NeuroD1]]
[20] Inoue M, Iwai R, Tabata H, Konno D, Komabayashi-Suzuki M, Watanabe C, Iwanari H, Mochizuki Y, Hamakubo T, Matsuzaki F, Nagata KI, Mizutani K. Prdm16 is crucial for progression of the multipolar phase during neural differentiation of the developing neocortex. Development. 2017;144(3):385-399PMID: 27993981<br />
* [[多極性細胞]]
[21] Miyoshi G, Fishell G. Dynamic FoxG1 expression coordinates the integration of multipolar pyramidal neuron precursors into the cortical plate. Neuron. 2012;74(6):1045-58. PMID: 22726835<br />
* [[外側脳室下帯]]
[22] Ohtaka-Maruyama C, Hirai S, Miwa A, Heng JI, Shitara H, Ishii R, Taya C, Kawano H, Kasai M, Nakajima K, Okado H. RP58 regulates the multipolar-bipolar transition of newborn neurons in the developing cerebral cortex. Cell Rep. 2013;3(2):458-71. PMID: 23395638<br />
* [[大脳皮質の発生]]
[23] Hansen DV, Lui JH, Parker PR, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 2010;464(7288):554-561. PMID: 20154730<br />
 
[24] Fietz SA, Kelava I, Vogt J, Wilsch-Bräuninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Distler W, Nitsch R, Huttner WB. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci. 2010;13(6):690-9. PMID: 20436478<br />
== 参考文献 ==
<references/>

2017年4月5日 (水) 15:16時点における版

英語名:neural progenitor cell


神経前駆細胞とは、神経系の未分化細胞であり、限られた分裂回数の後に分化を遂げるように運命付けられた細胞を指す。


目次

  • 神経前駆細胞とは
  • 未分化型前駆細胞と中間型幹細胞
  • 未分化型前駆細胞と中間型幹細胞を特徴付ける分子機構
  • 多極性形態細胞
  • oRG細胞
  • 関連項目
  • 参考文献


神経前駆細胞とは

 複雑な大脳皮質は哺乳類の脳の最大の特徴とされるが、これは複数の神経前駆細胞によって多様な神経細胞が産生された結果であることが近年の研究で明らかになりつつある。すなわち、神経上皮に生じた神経幹細胞が分裂して数を増やし、やがて未分化型前駆細胞(radial gliaあるいはapical progenitor)、中間型前駆細胞(basal progenitorあるいはintermediate progenitor)、oRG細胞(OSVZ radial glia-like cell)などの各々の前駆細胞が出現するが、これら異なる分裂・分化能力を有することで、固有の役割を担う結果として脳組織における細胞構築が可能となると考えられている[1]。実際、前駆細胞における分裂・分化の極めて小さなバランスの変化が最終的な脳のサイズに対して決定的な影響を及ぼすことが指摘されており[2]、例えば、β-cateninのトランスジェニックマウスの大脳皮質では未分化型前駆細胞の増殖性が2倍程度亢進することによって、極端な皮質表面積の拡大が確認されている[3]。


未分化型前駆細胞と中間型幹細胞

 哺乳類の胎生期大脳皮質の神経発生過程においては、放射状グリア細胞が脳室帯のapical面において自己複製を伴う非対称分裂を行い[4,5]、将来の神経細胞もしくは中間型前駆細胞を生じる。この中間型前駆細胞は限られた分化ポテンシャルを持ち、主に脳室帯のbasal側である脳室下帯で1〜3回程度の対称分裂によって神経細胞だけを生じる“neurogenic transient amplifying cells”の一種と考えられている[6]。この中間型前駆細胞は、大脳皮質の層形成、領野形成の構築に重要な役割を担う可能性が近年指摘されている。たとえば、“upper layer hypothesis”[7]では、中間型前駆細胞が大脳皮質発生初期に上層の神経細胞の発生に運命決定に寄与する可能性が報告されている[8,9]。また、“intermediate progenitor hypothesis”では、進化に伴う中間型前駆細胞の増殖性亢進が霊長類における大脳皮質表面積の拡大に寄与する可能性が指摘されている[10]。実際中間型幹細胞の分子マーカーであるTbr2(T-box brain protein 2)のヒトにおける変異は、大脳皮質形成不全との関連性が指摘されており[11]、大脳皮質の細胞構築における中間型前駆細胞の役割に興味が持たれる。一方、中間型前駆細胞は脳室下帯が形成される以前に出現し、発生期全体を通して豊富に存在するとの報告もあり[12]、実際に、定量的な解析においては上層の神経細胞ばかりでなく、下層の神経細胞の大多数(50〜95%)が中間型前駆細胞に由来すると指摘されている[13]。これらの知見は、領域・時期特異的に異なる性質に制限された中間型前駆細胞が、各々のradial unitから神経細胞の産生を指数関数的に増幅し、これが広範な大脳皮質発生に寄与留守可能性を示唆するものである。


未分化型前駆細胞と中間型幹細胞を特徴付ける分子機構

 それでは、脳室面で分裂する未分化型前駆細胞と非脳室面で分裂する中間型前駆細胞の運命はどのように決定付けられるのであろうか?未分化型神経前駆細胞の維持・増殖にはNotchシグナルが重要な役割を果たしていることが知られている[14]。このNotchシグナルをHes1の強制発現によって活性化すると、中間型前駆細胞の分子マーカー(Tbr2など)の発現が抑制すること[15]、中間型前駆細胞は減弱したNotchシグナルを利用していること[16]から、Notchシグナルの変化が未分化前駆細胞から中間型前駆細胞への推移に寄与している可能性がある。また、Fringe等による糖鎖修飾あるいは細胞内カルシウム濃度がNotchシグナルの調節に関与する可能性が近年報告されているが、未分化型前駆細胞はbFGFによって細胞内カルシウム濃度が上昇するのに対して、EGF刺激では同様のことが観察されない一方で、中間型前駆細胞やグリア前駆細胞はbFGFおよびEGFいずれによっても細胞内カルシウム濃度の上昇が確認されている[17]。すなわち、脳室下帯に位置する中間型前駆細胞はEGF反応性が高いことからも、細胞内カルシウム濃度の調節が未分化型前駆細胞から中間型前駆細胞への推移に関与している可能性も示唆される。


多極性形態細胞

 一方、最近の研究で、未分化型前駆細胞から生み出された未成熟な細胞(将来の神経細胞)は、分化過程において脳室下帯および中間帯において多極性形態(多数の突起を持つ)細胞へとその形態を大きく変化させることが見出されている[6,18]。このとき、未分化型前駆細胞が生み出した未成熟な細胞は、中間型幹細胞を経て多極性形態へと変化する細胞系譜と、中間型前駆細胞にならずに多極性細胞へと変化する細胞系譜が観察されている[19]。また、最近の研究で、未分化型前駆細胞から中間型前駆細胞や多極性細胞へと変化する際には、ミトコンドリア局在型の活性酸素種の量が大きく減少することが見出されており[20]、細胞内の代謝状態の変化が前駆細胞の推移と密接に関与し、これが大脳皮質の発生に決定的な役割を果たす可能性がある。実際、こうした未分化型前駆細胞から中間型前駆細胞および多極性細胞への推移が上手く進行しないと、大脳皮質の層形成に大きな影響を及ぼすことが報告されている[20,21,22]。


oRG細胞

 さらには最近の研究から、ヒトなどの高等哺乳類の胎生期大脳皮質の外側脳室下帯には神経細胞を生み出す前駆細胞が存在することが明らかになった[1,23,24]。この前駆細胞はoRG細胞とよばれ、基底膜方向にのみ一本の細胞突起を持つことを特徴とし、非対称分裂をおこなうことが明らかとなっている。今後、個々の前駆細胞が果たす役割が明確化されることで、大脳皮質の発生機構に重要な知見が見出されることが期待される。


関連項目

・未分化型前駆細胞
・中間型前駆細胞
・oRG細胞
・radial glia
・apical progenitor
・basal progenitor
・intermediate progenitor
・OSVZ radial glia-like cell
・多極性細胞
・大脳皮質の発生


参考文献

[1] Fietz SA, Huttner WB. Cortical progenitor expansion, self-renewal and neurogenesis-a polarized perspective. Curr Opin Neurobiol. 2011;21(1):23-35. PMID: 21036598
[2] Rakic P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 1995;18(9):383-8. PMID: 7482803
[3] Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science. 2002;297(5580):365-9. PMID: 12130776
[4] Miyata T, Kawaguchi A, Okano H, Ogawa M. Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron. 2001;31(5):727-41. PMID: 11567613
[5] Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M. Asymmetric production of surface-dividing and non-surface-dividing cortical progenitor cells. Development. 2004;131(13):3133-45. PMID: 15175243
[6] Noctor SC, Martínez-Cerdeño V, Ivic L, Kriegstein AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci. 2004 Feb;7(2):136-44. PMID: 14703572
[7] Smart IH, Smart M. Growth patterns in the lateral wall of the mouse telencephalon: I. Autoradiographic studies of the histogenesis of the isocortex and adjacent areas. J Anat. 1982;134(Pt 2):273-98. PMID: 7076556
[8] Tarabykin V, Stoykova A, Usman N, Gruss P. Cortical upper layer neurons derive from the subventricular zone as indicated by Svet1 gene expression. Development. 2001;128(11):1983-93. PMID: 11493521
[9] Zimmer C, Tiveron MC, Bodmer R, Cremer H. Dynamics of Cux2 expression suggests that an early pool of SVZ precursors is fated to become upper cortical layer neurons. Cereb Cortex. 2004;14(12):1408-20. PMID: 15238450
[10] Kriegstein A, Noctor S, Martínez-Cerdeño V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci. 2006;7(11):883-90. PMID: 17033683
[11] Baala L, Briault S, Etchevers HC, Laumonnier F, Natiq A, Amiel J, Boddaert N, Picard C, Sbiti A, Asermouh A, Attié-Bitach T, Encha-Razavi F, Munnich A, Sefiani A, Lyonnet S. Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis. Nat Genet. 2007;39(4):454-6. PMID: 17353897
[12] Wu SX, Goebbels S, Nakamura K, Nakamura K, Kometani K, Minato N, Kaneko T, Nave KA, Tamamaki N. Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc Natl Acad Sci U S A. 2005;102(47):17172-7. PMID: 16284248
[13] Haubensak W, Attardo A, Denk W, Huttner WB. Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci U S A. 2004;101(9):3196-201. PMID: 14963232
[14] Hitoshi S, Alexson T, Tropepe V, Donoviel D, Elia AJ, Nye JS, Conlon RA, Mak TW, Bernstein A, van der Kooy D. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev. 2002;16(7):846-58. PMID: 11937492
[15] Shimojo H, Ohtsuka T, Kageyama R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron. 2008;58(1):52-64. PMID: 18400163
[16] Mizutani K, Yoon K, Dang L, Tokunaga A, Gaiano N. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature. 2007;449(7160):351-5. PMID: 17721509
[17] Maric D, Maric I, Chang YH, Barker JL. Prospective cell sorting of embryonic rat neural stem cells and neuronal and glial progenitors reveals selective effects of basic fibroblast growth factor and epidermal growth factor on self-renewal and differentiation. J Neurosci. 2003 Jan 1;23(1):240-51. PMID: 12514221
[18] Tabata H1, Nakajima K. Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J Neurosci. 2003;23(31):9996-10001. PMID: 14602813
[19] Tabata H1, Kanatani S, Nakajima K. Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex. Cereb Cortex. 2009;19(9):2092-105. PMID: 19150920
[20] Inoue M, Iwai R, Tabata H, Konno D, Komabayashi-Suzuki M, Watanabe C, Iwanari H, Mochizuki Y, Hamakubo T, Matsuzaki F, Nagata KI, Mizutani K. Prdm16 is crucial for progression of the multipolar phase during neural differentiation of the developing neocortex. Development. 2017;144(3):385-399PMID: 27993981
[21] Miyoshi G, Fishell G. Dynamic FoxG1 expression coordinates the integration of multipolar pyramidal neuron precursors into the cortical plate. Neuron. 2012;74(6):1045-58. PMID: 22726835
[22] Ohtaka-Maruyama C, Hirai S, Miwa A, Heng JI, Shitara H, Ishii R, Taya C, Kawano H, Kasai M, Nakajima K, Okado H. RP58 regulates the multipolar-bipolar transition of newborn neurons in the developing cerebral cortex. Cell Rep. 2013;3(2):458-71. PMID: 23395638
[23] Hansen DV, Lui JH, Parker PR, Kriegstein AR. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature. 2010;464(7288):554-561. PMID: 20154730
[24] Fietz SA, Kelava I, Vogt J, Wilsch-Bräuninger M, Stenzel D, Fish JL, Corbeil D, Riehn A, Distler W, Nitsch R, Huttner WB. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat Neurosci. 2010;13(6):690-9. PMID: 20436478