「報酬予測」の版間の差分
Junko kurahashi (トーク | 投稿記録) 細編集の要約なし |
Hiroyukinakahara (トーク | 投稿記録) 細編集の要約なし |
||
(3人の利用者による、間の35版が非表示) | |||
1行目: | 1行目: | ||
英:Reward prediction | 英:Reward prediction | ||
{{box|text= | {{box|text= 報酬予測とは、ヒトを含む動物が、特定の情報から将来の報酬を予測することである。ここで「報酬」とは、食料・水などに代表される正の動機や感情を生む物質・出来事・状況・活動の総称であり、動物はより多くの報酬を得るため報酬を予測し、それにもとづく反応や行動を見せる。私たちが常日頃行うさまざまな意思決定は報酬予測に駆動されており、また近年では報酬予測と脳における学習メカニズムが深くかかわることが提案されている。ここでは、動物がみせる報酬予測にもとづく反応、また報酬予測にもとづいた適応的な行動選択、そしてこれらにかかわる神経活動について述べる。}} | ||
==報酬予測にかかわる行動== | ==報酬予測にかかわる行動== | ||
報酬の代表である食料・水は、動物の生存に不可欠であり、より多くの報酬を得るために反応・行動することは、種の存続に有利に働く。そのため、特定の情報から報酬の獲得が予測できる状況にあっては、動物は報酬を予測し、それにともなう様々な反応と行動をみせる。 | |||
実際に動物が報酬を予測していることを示唆する反応や行動は、[[パブロフ型条件づけ]](pavlovian conditioning、または古典的条件づけ、classical conditioning)や[[道具的条件づけ]](instrumental conditioning、またはオペラント条件づけ、operant conditioning)の実験に端的に表れる。近年の研究動向は、報酬予測の神経基盤へと拡がっているが、多くの場合そこで用いられるのもパブロフ型条件づけ・道具的条件づけの実験パラダイムである。以下では、パブロフ型条件づけと道具的条件づけの行動実験にみられる報酬予測に関連する反応と行動について説明する。 | |||
===パブロフ型条件づけと報酬予測にもとづく反応=== | |||
パブロフ型条件づけの実験パラダイムでは、動物の報酬予測にもとづく反応がみられる。パブロフ型条件づけでは、動物が本来意味を持たない外界の情報(刺激)と報酬の連合を学習する。たとえば、有名な「パブロフの犬」の実験では、イヌがベルの音を聞いた直後に餌が与えられることを何度も経験するうちに、ベルの音を聞くだけでヨダレをだすようになる。これは、イヌがベルの音と餌の獲得の連合を学習したものと解釈できる。ここでは餌が報酬であり、無条件(学習を必要とせず)に唾液の分泌という反応を引き起こすことから、無条件刺激(unconditioned stimulus、US)と呼ばれる。また、ベルの音は学習の結果ヨダレの反応を引き起こすことから、条件刺激(conditioned stimulus、CS)と呼ばれる。動物が本来意味を持たないCSに対してUSによって引き起こされる反応を獲得することは、動物がCSをもとに報酬が得られることを予測するようになったためと考えられる。 | |||
さらに、パブロフ型条件づけ課題では、動物が報酬を期待していることを示す自発的反応もみられる。たとえば、動物はCSの提示に際してCSや報酬の提示場所へ近づく接近反応(approach response)をみせる<ref name=bouton>'''Mark E Bouton'''<br>Learning and behavior: A contemporary synthesis Second Edition<br>''Sinauer Associates'': 2007</ref>。また、ラットに報酬としてジュースを与える課題では、報酬が与えられる前に飲み口を予期的に舐めるリッキング(licking)行動がみられる<ref name=tsutsui>'''筒井健一郎、大山佳'''<br>報酬期待の神経科学、社会脳シリーズ第5巻・報酬を期待する脳<br>''苧坂直行編、新曜社(東京)'':2014</ref>。これらの報酬予測にもとづく報酬獲得の準備行動も、動物がCSにもとづき報酬を予測していることを支持している。 | |||
このような報酬予測にもとづく反応はどのように学習されるのだろうか? ここでは、パブロフ型条件づけの課題で実際にみられる動物の行動をよく説明する「レスコーラ・ワグナーの学習則」と呼ばれる[[強化学習]]の学習則を紹介する<ref>'''Peter Dayan, L. F. Abbott'''<br>Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems <br>''The MIT Press'': 2001</ref> <ref>'''Peter Dayan, Hiroyuki Nakahara'''<br>Models and Methods for Reinforcement Learning, The Stevens’ Handbook of Experimental Psychology<br>''Wiley'': 2017</ref> | |||
レスコーラ・ワグナーの学習則では、実際に得られた報酬量と予期された報酬量の差分である「報酬予測誤差(reward prediction error)」を学習信号として、今までの予期報酬を新たな予期報酬へと更新する: | |||
<i>新たな予期報酬 = 今までの予期報酬 + 学習係数 × 報酬予測誤差</i> | <i>新たな予期報酬 = 今までの予期報酬 + 学習係数 × 報酬予測誤差</i> | ||
上式からわかるように、新たな予期報酬は、報酬予測誤差が正であれば(報酬が予想していたより多ければ)上方修正され、負であれば(報酬が予想していたより少なければ)下方修正される。また、報酬予測誤差が小さくなるほど学習が遅くなり、誤差がないときに学習は起こらない。 | |||
これらのことは、実際のパブロフ型条件づけのさまざまな行動実験で確認されている。たとえば、光が点灯すると餌がもらえることを学習したラットに対し、光と音を同時に呈示した後に餌を与えることを繰り返しても、音に対する学習は起こらない。これは「阻止効果(blocking effect)」と呼ばれている<ref name=bouton />。強化学習の枠組みでは、先に学習された光から餌の獲得が完全に予測されるため、音に対する報酬予測誤差がゼロとなるからであると解釈できる。 | |||
=== | ===道具的条件づけと報酬予測にもとづく行動選択=== | ||
動物は、報酬予測にもとづき適応的に行動を選択する。このような行動選択を調べるための実験パラダイムとして、道具的条件づけがある。受動的な課題であるパブロフ型条件づけの実験パラダイムは、自らの反応や行動と実際に報酬が得られるかどうかに関わりがないため、動物の積極的な行動選択を調べることはできない。これに対して、道具的条件づけの実験パラダイムでは、特定の刺激に対して選択される行動次第で得られる報酬に違いが生まれる。このような課題のなかで、動物は特定の行動の結果得られる報酬を予測し、より多くのより好ましい報酬を得るために適応的な行動選択をみせる。 | |||
なお、道具的条件づけを大別すると、動物がいつ・どのような行動を採るかに制限のない(free responding)課題と、試行ごとに採り得る行動の選択肢があらかじめ決まっている課題があるが、ここでは主に後者に関連して報酬予測と行動選択の関係を概観する。 | |||
道具的条件づけの課題のなかでも、報酬予測にもとづく行動を調べるためによく用いられる課題に、遅延選択課題(delayed response task)がある。たとえば、典型的な遅延選択課題では、サルは各試行で左右どちらかのボタンを押すことが求められる。このとき、ボタン押しに先んじて視野の左右どちらかに手がかり刺激が呈示される。サルは、手がかり刺激が消えてから数秒後にボタンを押すよう訓練され、刺激が呈示されたのと同じ側のボタンを押した場合には報酬として餌やジュースを得るが、逆側を押した場合には報酬が得られない。 | |||
このような課題で、サルは手がかり刺激が呈示された側のボタンを押して報酬を得ることを学習する。より多くの報酬をもたらす行動の頻度が増加するという現象は、遅延反応課題に限らず多くの課題で確認されている。動物がこのような学習をすることは、行動の結果得られる報酬が予測されていることを支持している。 | |||
さらに、遅延選択課題でサルの好物であるバナナを報酬として条件づけを行った場合、報酬が突然レタスに変更されると、サルは驚きと怒りをみせる<ref>'''O L Tinklepaugh'''<br>An experimental study of representative factors in monkeys.<br>''J. Comp. Psychol.'': 1928, (8);197-236</ref>。これは、サルが学習の結果、報酬としてバナナを期待するようになったことを支持している<ref name=watanabe1996><pubmed> 8757133 </pubmed></ref>。また、同様の実験パラダイムで二種類の手がかり刺激がそれぞれ異なる報酬(異なる種類のジュース)と対応していることを学習したサルでは、より嗜好性の高い報酬が得られる試行において、サルがより長い時間予期的なリッキング行動を続け、より短い反応時間かつより高い正当率で回答することが報告されている<ref name=hassani2001><pubmed> 11387394 </pubmed></ref>。これらのこともまた、サルが学習の結果報酬を予測していることを支持している。 | |||
==報酬予測にかかわる神経活動== | ==報酬予測にかかわる神経活動== | ||
[[ファイル: | [[ファイル:RP_fig1.jpg|thumb|400px|'''図1.遅延反応課題における報酬予測にかかわる神経活動のイメージ'''(A)報酬を予測する刺激の価値を反映したニューロンの活動。(B)報酬をもたらす行動の価値を反映したニューロンの活動。(C)報酬への期待を反映したニューロンの活動。黄色と青色は、同じニューロンが、嗜好性の高い報酬と低い報酬が予測される場合にみせる反応。]] | ||
報酬予測にかかわる神経活動は、一般に[[報酬系]] | 報酬予測にかかわる神経活動は、一般に[[報酬系]]と呼ばれる脳領域群をはじめとして、多様な脳領域で見られる<ref name=tsutsui /> <ref name=schultz2006 /> <ref name=hikosaka2006 />。ここでは、報酬予測にかかわる神経活動を、報酬を予測する刺激の価値を反映した神経活動(図1A)、報酬をもたらす行動の価値を反映した神経活動(図1B)、動物の報酬への期待を反映する神経活動(図1C)に分類し<ref name=tsutsui /> <ref name=schultz2015 />、それぞれの神経活動の特徴とそのような活動がみられる領域を紹介する。そして、刺激や行動の価値を反映したニューロンの活動を調整する学習信号と考えられているドーパミンニューロンの活動を紹介する。 | ||
===刺激や行動の価値の神経活動=== | ===刺激や行動の価値の神経活動=== | ||
報酬を予測することは、報酬を予測する刺激やより多くの報酬をもたらす特定の行動に「価値(value)」を生成し、それを調節することと言い換えられる<ref name=sakagami>'''坂上雅道'''<br>価値の生成とその神経機構、報酬期待の神経科学、社会脳シリーズ第5巻・報酬を期待する脳<br>''苧坂直行編、新曜社(東京)'':2014</ref>。たとえば、パブロフ型条件づけでは、動物にとって本来意味を持たなかった刺激が、刺激と報酬の連合が学習されることで未来の報酬を予測する価値の高い情報となる。また、道具的条件づけでは、動物にとって本来意味を持たなかった行動が、行動選択と報酬の連合が学習によってより多くの報酬をもたらす価値の高い行動となる。 | |||
このような刺激や行動の価値を反映するようなニューロンの活動は、多くの研究で報告されている <ref name=tsutsui /> <ref name=schultz2006 /> <ref name=hikosaka2006 />。特定の刺激や行動の価値を反映したニューロンの活動は、それぞれ刺激が呈示された直後、そして行動の開始前後に上昇する特徴を持つ。また、どちらの場合も予測される報酬の量や好ましさに応じた活動増加をみせる(図1A、B)<ref name=schultz2015><pubmed> 26109341 </pubmed></ref>。 | |||
刺激の価値を反映した報酬予測の神経活動は、眼窩前頭皮質<ref name=Padoa-Schioppa2006><pubmed> 16633341 </pubmed></ref> <ref><pubmed> 8734596 </pubmed></ref> <ref name=Tremblay1999><pubmed> 10227292 </pubmed></ref> <ref name=rosech2004><pubmed> 15073380 </pubmed></ref>、線条体 <ref name=kawagoe1998><pubmed> 10196532 </pubmed></ref> <ref name=hassani2001 /> <ref><pubmed> | |||
6589643 </pubmed></ref> <ref name=cromwell2003><pubmed> | |||
12611937 </pubmed></ref>、扁桃体 <ref><pubmed> 3193171 </pubmed></ref> <ref><pubmed> 16482160 </pubmed></ref>、中脳ドーパミン領域(腹側被蓋野・黒質緻密部<ref><pubmed> 3794777</pubmed></ref>)、上丘<ref name=ikeda2003 />などで報告されている。また、行動の価値に関連した報酬予測の神経活動は、線条体<ref name=hassani2001 /> <ref name=cromwell2003 /><ref><pubmed> | |||
16311337 </pubmed></ref> <ref name name=lauwereyns2002><pubmed> 12140557 </pubmed></ref> <ref><pubmed> | |||
14602819 </pubmed></ref> <ref><pubmed> 18466754 </pubmed></ref>、後頭頂皮質<ref><pubmed> 15205529 </pubmed></ref>などで報告されている。 | |||
===報酬期待の神経活動=== | |||
これまでの多くの実験から、動物の報酬への期待を反映したような神経活動が報告されている<ref name=tsutsui /> <ref name=hikosaka2006><pubmed> 16424448 </pubmed></ref> <ref name=schultz2006 />。このような神経活動は、報酬を予測する刺激(パブロフ型条件づけのCS・遅延反応課題の手がかり刺激など)が呈示された後、報酬が獲得されるまでの間に持続的に増大し、さらに活動の増大幅は予測された報酬の量や好ましさを反映するという特徴を持つ<ref name=tsutsui /> <ref name=schultz2006><pubmed> 16318590 </pubmed></ref>(図1C)<ref name=schultz2015 />。 | |||
報酬期待の神経活動がみられる脳領野は多岐にわたっている。大脳皮質下の領域では、線条体<ref><pubmed> 1464759 </pubmed></ref> <ref name=hikosaka2006 /> <ref><pubmed> 2723722 </pubmed></ref> <ref name=kawagoe1998 /> <ref><pubmed> 8867118 </pubmed></ref>、淡蒼球<ref><pubmed> 23177966 </pubmed></ref>、扁桃体 <ref name=schoenbaum1998><pubmed> 10195132 </pubmed></ref>、中脳ドーパミン領域(腹側被蓋野<ref><pubmed> 22258508 </pubmed></ref>・黒質緻密部<ref><pubmed> 11896175 </pubmed></ref>)、上丘<ref name=ikeda2003><pubmed> 12925282 </pubmed></ref>、脚橋被蓋核<ref><pubmed> 19369554 </pubmed></ref>などで報酬期待の神経活動が見られる。また、大脳皮質では、背外側前頭前皮質<ref name=watanabe1996 /> <ref><pubmed> 3971157 </pubmed></ref> <ref><pubmed> 10571234 </pubmed></ref> <ref name=rosech2003><pubmed> 12801905 </pubmed></ref>、眼窩前頭前皮質 <ref name=Tremblay1999 /> <ref name=schoenbaum1998 />、後頭頂皮質<ref><pubmed> 10421364 </pubmed></ref> <ref><pubmed> 15205529 </pubmed></ref>、前帯状回皮質<ref><pubmed> 12040201 </pubmed></ref>、島皮質<ref><pubmed> 16979828 </pubmed></ref> <ref><pubmed> 22402653 | |||
</pubmed></ref>、運動前野<ref name=rosech2004 /> <ref name=rosech2003 />などで報酬期待の神経活動が報告されている。 | |||
これらの報酬期待の神経活動には、期待される報酬の量や好ましさの情報とともに、報酬を予測する刺激の知覚情報や、報酬を獲得するための行動情報が符号化されている場合が多い<ref name=hikosaka2006 /> <ref name=schultz2015 />。たとえば、サルの遅延反応課題中の神経活動を計測した実験では、手がかり刺激が視野の対側に呈示されるトライアルでより発火頻度を高める神経細胞が線条体で見つかっている<ref name=kawagoe1998 /> <ref name=lauwereyns2002 />。このような運動準備情報を含む報酬期待の神経信号は、上流で表現されている行動の価値に応じた適切な行動を遂行することを可能にしていると考えられている<ref name=hikosaka2006 />。 | |||
さらに、報酬期待の神経活動は、刺激や行動の価値を反映した神経活動より時間的に遅れて高まる。このことは、報酬期待を反映した持続的な活動が、刺激や行動の価値を反映した神経活動によって引き起こされていることを示唆している<ref name=tsutsui />。刺激や行動の価値を表現した神経活動が、どのように報酬期待の神経活動を調節しているかについては、今後の研究が俟たれる。 | |||
===ドーパミンニューロンの活動と報酬予測誤差=== | |||
近年、[[ドーパミンニューロン]]のphasic活動が、強化学習で一般に報酬予測誤差と呼ばれる学習信号を符号化しているとする「ドーパミン報酬予測誤差仮説」<ref name=schultz1997><pubmed> 9054347 </pubmed></ref>が注目されている。 | |||
ドーパミン報酬予測誤差仮説を支持する研究結果として、たとえば、道具的条件づけの実験でサルのドーパミンニューロンの反応が学習に伴い変化することが知られている<ref><pubmed> 7983508</pubmed></ref> <ref name=schultz1997 />。ドーパミンニューロンは、学習の初期には報酬の獲得にあわせて活動を増大させる。この反応は、学習が進むにつれ消失し、報酬を予測する手がかり刺激の呈示直後に活動が増大するようになる。また、予想された報酬が呈示されなかった場合には、報酬が予測された時刻の活動に低下がみられる。これらのことは、ドーパミンニューロンが正負の報酬予測誤差を両方向的に符号化していることを示唆している<ref name=schultz2006 />。さらに、阻止効果の実験でもドーパミンニューロンが強化学習の理論から予見される学習信号を反映した活動をみせることが報告されおり<ref><pubmed> 11452299 </pubmed></ref> <ref><pubmed> 14741107 </pubmed></ref>、近年では[[オプトジェネティクス]]やマイクロスティミュレーションを用いてドーパミンニューロンの活動を人為的に操作すると学習が阻害されることが報告されている<ref><pubmed> 28390863 </pubmed></ref> 。 | |||
近年では、報酬期待の神経活動が見られる線条体でも、報酬予測誤差を反映するような神経活動が報告されており<ref name=oyama2010><pubmed> 20739566 </pubmed></ref>、また手綱外側核では、罰の予測に関連してドーパミンニューロンとは逆に負の報酬予測誤差を反映するニューロンが報告されている<ref><pubmed> 17522629 </pubmed></ref>。これらの神経活動もなんらかの形で報酬予測に関連する活動の調整に関与しているとみられるが、その詳細はまだわかっていない。さらに、報酬予測誤差そのものが脳でどのように計算されているのかという問題も今後の研究が俟たれている<ref name=tsutsui />。 | |||
また、ドーパミンニューロンは、前述の刺激や行動の価値を反映した神経活動が報告されている脳領域の多くに投射しており<ref name=hikosaka2006 /> <ref name=schultz2006 />、ドーパミンニューロンの活動によって、その投射先で起こるドーパミンの放出はニューロンのシナプス強度を調節する<ref><pubmed> 11544526 </pubmed></ref> <ref><pubmed> 17367873 </pubmed></ref> <ref><pubmed> 25258080</pubmed></ref>。これらのことは、報酬予測誤差を反映したドーパミン動物の活動が、神経可塑性を介して脳における価値表現を調節していることを示唆している。 | |||
== 関連項目 == | == 関連項目 == | ||
80行目: | 74行目: | ||
*[[強化学習]] | *[[強化学習]] | ||
*[[報酬系]] | *[[報酬系]] | ||
*[[ | *[[ドーパミンニューロン]] | ||
== 参考文献 == | == 参考文献 == | ||
<references/> | <references/> | ||
(執筆者:望月泰博、福田玄明、陳冲、中原裕之、担当編集委員:??) |
2018年2月2日 (金) 20:34時点における版
英:Reward prediction
報酬予測とは、ヒトを含む動物が、特定の情報から将来の報酬を予測することである。ここで「報酬」とは、食料・水などに代表される正の動機や感情を生む物質・出来事・状況・活動の総称であり、動物はより多くの報酬を得るため報酬を予測し、それにもとづく反応や行動を見せる。私たちが常日頃行うさまざまな意思決定は報酬予測に駆動されており、また近年では報酬予測と脳における学習メカニズムが深くかかわることが提案されている。ここでは、動物がみせる報酬予測にもとづく反応、また報酬予測にもとづいた適応的な行動選択、そしてこれらにかかわる神経活動について述べる。
報酬予測にかかわる行動
報酬の代表である食料・水は、動物の生存に不可欠であり、より多くの報酬を得るために反応・行動することは、種の存続に有利に働く。そのため、特定の情報から報酬の獲得が予測できる状況にあっては、動物は報酬を予測し、それにともなう様々な反応と行動をみせる。
実際に動物が報酬を予測していることを示唆する反応や行動は、パブロフ型条件づけ(pavlovian conditioning、または古典的条件づけ、classical conditioning)や道具的条件づけ(instrumental conditioning、またはオペラント条件づけ、operant conditioning)の実験に端的に表れる。近年の研究動向は、報酬予測の神経基盤へと拡がっているが、多くの場合そこで用いられるのもパブロフ型条件づけ・道具的条件づけの実験パラダイムである。以下では、パブロフ型条件づけと道具的条件づけの行動実験にみられる報酬予測に関連する反応と行動について説明する。
パブロフ型条件づけと報酬予測にもとづく反応
パブロフ型条件づけの実験パラダイムでは、動物の報酬予測にもとづく反応がみられる。パブロフ型条件づけでは、動物が本来意味を持たない外界の情報(刺激)と報酬の連合を学習する。たとえば、有名な「パブロフの犬」の実験では、イヌがベルの音を聞いた直後に餌が与えられることを何度も経験するうちに、ベルの音を聞くだけでヨダレをだすようになる。これは、イヌがベルの音と餌の獲得の連合を学習したものと解釈できる。ここでは餌が報酬であり、無条件(学習を必要とせず)に唾液の分泌という反応を引き起こすことから、無条件刺激(unconditioned stimulus、US)と呼ばれる。また、ベルの音は学習の結果ヨダレの反応を引き起こすことから、条件刺激(conditioned stimulus、CS)と呼ばれる。動物が本来意味を持たないCSに対してUSによって引き起こされる反応を獲得することは、動物がCSをもとに報酬が得られることを予測するようになったためと考えられる。
さらに、パブロフ型条件づけ課題では、動物が報酬を期待していることを示す自発的反応もみられる。たとえば、動物はCSの提示に際してCSや報酬の提示場所へ近づく接近反応(approach response)をみせる[1]。また、ラットに報酬としてジュースを与える課題では、報酬が与えられる前に飲み口を予期的に舐めるリッキング(licking)行動がみられる[2]。これらの報酬予測にもとづく報酬獲得の準備行動も、動物がCSにもとづき報酬を予測していることを支持している。
このような報酬予測にもとづく反応はどのように学習されるのだろうか? ここでは、パブロフ型条件づけの課題で実際にみられる動物の行動をよく説明する「レスコーラ・ワグナーの学習則」と呼ばれる強化学習の学習則を紹介する[3] [4]
レスコーラ・ワグナーの学習則では、実際に得られた報酬量と予期された報酬量の差分である「報酬予測誤差(reward prediction error)」を学習信号として、今までの予期報酬を新たな予期報酬へと更新する:
新たな予期報酬 = 今までの予期報酬 + 学習係数 × 報酬予測誤差
上式からわかるように、新たな予期報酬は、報酬予測誤差が正であれば(報酬が予想していたより多ければ)上方修正され、負であれば(報酬が予想していたより少なければ)下方修正される。また、報酬予測誤差が小さくなるほど学習が遅くなり、誤差がないときに学習は起こらない。
これらのことは、実際のパブロフ型条件づけのさまざまな行動実験で確認されている。たとえば、光が点灯すると餌がもらえることを学習したラットに対し、光と音を同時に呈示した後に餌を与えることを繰り返しても、音に対する学習は起こらない。これは「阻止効果(blocking effect)」と呼ばれている[1]。強化学習の枠組みでは、先に学習された光から餌の獲得が完全に予測されるため、音に対する報酬予測誤差がゼロとなるからであると解釈できる。
道具的条件づけと報酬予測にもとづく行動選択
動物は、報酬予測にもとづき適応的に行動を選択する。このような行動選択を調べるための実験パラダイムとして、道具的条件づけがある。受動的な課題であるパブロフ型条件づけの実験パラダイムは、自らの反応や行動と実際に報酬が得られるかどうかに関わりがないため、動物の積極的な行動選択を調べることはできない。これに対して、道具的条件づけの実験パラダイムでは、特定の刺激に対して選択される行動次第で得られる報酬に違いが生まれる。このような課題のなかで、動物は特定の行動の結果得られる報酬を予測し、より多くのより好ましい報酬を得るために適応的な行動選択をみせる。
なお、道具的条件づけを大別すると、動物がいつ・どのような行動を採るかに制限のない(free responding)課題と、試行ごとに採り得る行動の選択肢があらかじめ決まっている課題があるが、ここでは主に後者に関連して報酬予測と行動選択の関係を概観する。
道具的条件づけの課題のなかでも、報酬予測にもとづく行動を調べるためによく用いられる課題に、遅延選択課題(delayed response task)がある。たとえば、典型的な遅延選択課題では、サルは各試行で左右どちらかのボタンを押すことが求められる。このとき、ボタン押しに先んじて視野の左右どちらかに手がかり刺激が呈示される。サルは、手がかり刺激が消えてから数秒後にボタンを押すよう訓練され、刺激が呈示されたのと同じ側のボタンを押した場合には報酬として餌やジュースを得るが、逆側を押した場合には報酬が得られない。
このような課題で、サルは手がかり刺激が呈示された側のボタンを押して報酬を得ることを学習する。より多くの報酬をもたらす行動の頻度が増加するという現象は、遅延反応課題に限らず多くの課題で確認されている。動物がこのような学習をすることは、行動の結果得られる報酬が予測されていることを支持している。
さらに、遅延選択課題でサルの好物であるバナナを報酬として条件づけを行った場合、報酬が突然レタスに変更されると、サルは驚きと怒りをみせる[5]。これは、サルが学習の結果、報酬としてバナナを期待するようになったことを支持している[6]。また、同様の実験パラダイムで二種類の手がかり刺激がそれぞれ異なる報酬(異なる種類のジュース)と対応していることを学習したサルでは、より嗜好性の高い報酬が得られる試行において、サルがより長い時間予期的なリッキング行動を続け、より短い反応時間かつより高い正当率で回答することが報告されている[7]。これらのこともまた、サルが学習の結果報酬を予測していることを支持している。
報酬予測にかかわる神経活動
報酬予測にかかわる神経活動は、一般に報酬系と呼ばれる脳領域群をはじめとして、多様な脳領域で見られる[2] [8] [9]。ここでは、報酬予測にかかわる神経活動を、報酬を予測する刺激の価値を反映した神経活動(図1A)、報酬をもたらす行動の価値を反映した神経活動(図1B)、動物の報酬への期待を反映する神経活動(図1C)に分類し[2] [10]、それぞれの神経活動の特徴とそのような活動がみられる領域を紹介する。そして、刺激や行動の価値を反映したニューロンの活動を調整する学習信号と考えられているドーパミンニューロンの活動を紹介する。
刺激や行動の価値の神経活動
報酬を予測することは、報酬を予測する刺激やより多くの報酬をもたらす特定の行動に「価値(value)」を生成し、それを調節することと言い換えられる[11]。たとえば、パブロフ型条件づけでは、動物にとって本来意味を持たなかった刺激が、刺激と報酬の連合が学習されることで未来の報酬を予測する価値の高い情報となる。また、道具的条件づけでは、動物にとって本来意味を持たなかった行動が、行動選択と報酬の連合が学習によってより多くの報酬をもたらす価値の高い行動となる。
このような刺激や行動の価値を反映するようなニューロンの活動は、多くの研究で報告されている [2] [8] [9]。特定の刺激や行動の価値を反映したニューロンの活動は、それぞれ刺激が呈示された直後、そして行動の開始前後に上昇する特徴を持つ。また、どちらの場合も予測される報酬の量や好ましさに応じた活動増加をみせる(図1A、B)[10]。
刺激の価値を反映した報酬予測の神経活動は、眼窩前頭皮質[12] [13] [14] [15]、線条体 [16] [7] [17] [18]、扁桃体 [19] [20]、中脳ドーパミン領域(腹側被蓋野・黒質緻密部[21])、上丘[22]などで報告されている。また、行動の価値に関連した報酬予測の神経活動は、線条体[7] [18][23] [24] [25] [26]、後頭頂皮質[27]などで報告されている。
報酬期待の神経活動
これまでの多くの実験から、動物の報酬への期待を反映したような神経活動が報告されている[2] [9] [8]。このような神経活動は、報酬を予測する刺激(パブロフ型条件づけのCS・遅延反応課題の手がかり刺激など)が呈示された後、報酬が獲得されるまでの間に持続的に増大し、さらに活動の増大幅は予測された報酬の量や好ましさを反映するという特徴を持つ[2] [8](図1C)[10]。
報酬期待の神経活動がみられる脳領野は多岐にわたっている。大脳皮質下の領域では、線条体[28] [9] [29] [16] [30]、淡蒼球[31]、扁桃体 [32]、中脳ドーパミン領域(腹側被蓋野[33]・黒質緻密部[34])、上丘[22]、脚橋被蓋核[35]などで報酬期待の神経活動が見られる。また、大脳皮質では、背外側前頭前皮質[6] [36] [37] [38]、眼窩前頭前皮質 [14] [32]、後頭頂皮質[39] [40]、前帯状回皮質[41]、島皮質[42] [43]、運動前野[15] [38]などで報酬期待の神経活動が報告されている。
これらの報酬期待の神経活動には、期待される報酬の量や好ましさの情報とともに、報酬を予測する刺激の知覚情報や、報酬を獲得するための行動情報が符号化されている場合が多い[9] [10]。たとえば、サルの遅延反応課題中の神経活動を計測した実験では、手がかり刺激が視野の対側に呈示されるトライアルでより発火頻度を高める神経細胞が線条体で見つかっている[16] [24]。このような運動準備情報を含む報酬期待の神経信号は、上流で表現されている行動の価値に応じた適切な行動を遂行することを可能にしていると考えられている[9]。
さらに、報酬期待の神経活動は、刺激や行動の価値を反映した神経活動より時間的に遅れて高まる。このことは、報酬期待を反映した持続的な活動が、刺激や行動の価値を反映した神経活動によって引き起こされていることを示唆している[2]。刺激や行動の価値を表現した神経活動が、どのように報酬期待の神経活動を調節しているかについては、今後の研究が俟たれる。
ドーパミンニューロンの活動と報酬予測誤差
近年、ドーパミンニューロンのphasic活動が、強化学習で一般に報酬予測誤差と呼ばれる学習信号を符号化しているとする「ドーパミン報酬予測誤差仮説」[44]が注目されている。
ドーパミン報酬予測誤差仮説を支持する研究結果として、たとえば、道具的条件づけの実験でサルのドーパミンニューロンの反応が学習に伴い変化することが知られている[45] [44]。ドーパミンニューロンは、学習の初期には報酬の獲得にあわせて活動を増大させる。この反応は、学習が進むにつれ消失し、報酬を予測する手がかり刺激の呈示直後に活動が増大するようになる。また、予想された報酬が呈示されなかった場合には、報酬が予測された時刻の活動に低下がみられる。これらのことは、ドーパミンニューロンが正負の報酬予測誤差を両方向的に符号化していることを示唆している[8]。さらに、阻止効果の実験でもドーパミンニューロンが強化学習の理論から予見される学習信号を反映した活動をみせることが報告されおり[46] [47]、近年ではオプトジェネティクスやマイクロスティミュレーションを用いてドーパミンニューロンの活動を人為的に操作すると学習が阻害されることが報告されている[48] 。
近年では、報酬期待の神経活動が見られる線条体でも、報酬予測誤差を反映するような神経活動が報告されており[49]、また手綱外側核では、罰の予測に関連してドーパミンニューロンとは逆に負の報酬予測誤差を反映するニューロンが報告されている[50]。これらの神経活動もなんらかの形で報酬予測に関連する活動の調整に関与しているとみられるが、その詳細はまだわかっていない。さらに、報酬予測誤差そのものが脳でどのように計算されているのかという問題も今後の研究が俟たれている[2]。
また、ドーパミンニューロンは、前述の刺激や行動の価値を反映した神経活動が報告されている脳領域の多くに投射しており[9] [8]、ドーパミンニューロンの活動によって、その投射先で起こるドーパミンの放出はニューロンのシナプス強度を調節する[51] [52] [53]。これらのことは、報酬予測誤差を反映したドーパミン動物の活動が、神経可塑性を介して脳における価値表現を調節していることを示唆している。
関連項目
参考文献
- ↑ 1.0 1.1 Mark E Bouton
Learning and behavior: A contemporary synthesis Second Edition
Sinauer Associates: 2007 - ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 筒井健一郎、大山佳
報酬期待の神経科学、社会脳シリーズ第5巻・報酬を期待する脳
苧坂直行編、新曜社(東京):2014 - ↑ Peter Dayan, L. F. Abbott
Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems
The MIT Press: 2001 - ↑ Peter Dayan, Hiroyuki Nakahara
Models and Methods for Reinforcement Learning, The Stevens’ Handbook of Experimental Psychology
Wiley: 2017 - ↑ O L Tinklepaugh
An experimental study of representative factors in monkeys.
J. Comp. Psychol.: 1928, (8);197-236 - ↑ 6.0 6.1
Watanabe, M. (1996).
Reward expectancy in primate prefrontal neurons. Nature, 382(6592), 629-32. [PubMed:8757133] [WorldCat] [DOI] - ↑ 7.0 7.1 7.2
Hassani, O.K., Cromwell, H.C., & Schultz, W. (2001).
Influence of expectation of different rewards on behavior-related neuronal activity in the striatum. Journal of neurophysiology, 85(6), 2477-89. [PubMed:11387394] [WorldCat] [DOI] - ↑ 8.0 8.1 8.2 8.3 8.4 8.5
Schultz, W. (2006).
Behavioral theories and the neurophysiology of reward. Annual review of psychology, 57, 87-115. [PubMed:16318590] [WorldCat] [DOI] - ↑ 9.0 9.1 9.2 9.3 9.4 9.5 9.6
Hikosaka, O., Nakamura, K., & Nakahara, H. (2006).
Basal ganglia orient eyes to reward. Journal of neurophysiology, 95(2), 567-84. [PubMed:16424448] [WorldCat] [DOI] - ↑ 10.0 10.1 10.2 10.3
Schultz, W. (2015).
Neuronal Reward and Decision Signals: From Theories to Data. Physiological reviews, 95(3), 853-951. [PubMed:26109341] [PMC] [WorldCat] [DOI] - ↑ 坂上雅道
価値の生成とその神経機構、報酬期待の神経科学、社会脳シリーズ第5巻・報酬を期待する脳
苧坂直行編、新曜社(東京):2014 - ↑
Padoa-Schioppa, C., & Assad, J.A. (2006).
Neurons in the orbitofrontal cortex encode economic value. Nature, 441(7090), 223-6. [PubMed:16633341] [PMC] [WorldCat] [DOI] - ↑
Rolls, E.T., Critchley, H.D., Mason, R., & Wakeman, E.A. (1996).
Orbitofrontal cortex neurons: role in olfactory and visual association learning. Journal of neurophysiology, 75(5), 1970-81. [PubMed:8734596] [WorldCat] [DOI] - ↑ 14.0 14.1
Tremblay, L., & Schultz, W. (1999).
Relative reward preference in primate orbitofrontal cortex. Nature, 398(6729), 704-8. [PubMed:10227292] [WorldCat] [DOI] - ↑ 15.0 15.1
Roesch, M.R., & Olson, C.R. (2004).
Neuronal activity related to reward value and motivation in primate frontal cortex. Science (New York, N.Y.), 304(5668), 307-10. [PubMed:15073380] [WorldCat] [DOI] - ↑ 16.0 16.1 16.2
Kawagoe, R., Takikawa, Y., & Hikosaka, O. (1998).
Expectation of reward modulates cognitive signals in the basal ganglia. Nature neuroscience, 1(5), 411-6. [PubMed:10196532] [WorldCat] [DOI] - ↑
Kimura, M., Rajkowski, J., & Evarts, E. (1984).
Tonically discharging putamen neurons exhibit set-dependent responses. Proceedings of the National Academy of Sciences of the United States of America, 81(15), 4998-5001. [PubMed:6589643] [PMC] [WorldCat] [DOI] - ↑ 18.0 18.1
Cromwell, H.C., & Schultz, W. (2003).
Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. Journal of neurophysiology, 89(5), 2823-38. [PubMed:12611937] [WorldCat] [DOI] - ↑
Nishijo, H., Ono, T., & Nishino, H. (1988).
Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance. The Journal of neuroscience : the official journal of the Society for Neuroscience, 8(10), 3570-83. [PubMed:3193171] [WorldCat] - ↑
Paton, J.J., Belova, M.A., Morrison, S.E., & Salzman, C.D. (2006).
The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature, 439(7078), 865-70. [PubMed:16482160] [PMC] [WorldCat] [DOI] - ↑
Schultz, W. (1986).
Responses of midbrain dopamine neurons to behavioral trigger stimuli in the monkey. Journal of neurophysiology, 56(5), 1439-61. [PubMed:3794777] [WorldCat] [DOI] - ↑ 22.0 22.1
Ikeda, T., & Hikosaka, O. (2003).
Reward-dependent gain and bias of visual responses in primate superior colliculus. Neuron, 39(4), 693-700. [PubMed:12925282] [WorldCat] [DOI] - ↑
Samejima, K., Ueda, Y., Doya, K., & Kimura, M. (2005).
Representation of action-specific reward values in the striatum. Science (New York, N.Y.), 310(5752), 1337-40. [PubMed:16311337] [WorldCat] [DOI] - ↑ 24.0 24.1
Lauwereyns, J., Watanabe, K., Coe, B., & Hikosaka, O. (2002).
A neural correlate of response bias in monkey caudate nucleus. Nature, 418(6896), 413-7. [PubMed:12140557] [WorldCat] [DOI] - ↑
Watanabe, K., Lauwereyns, J., & Hikosaka, O. (2003).
Neural correlates of rewarded and unrewarded eye movements in the primate caudate nucleus. The Journal of neuroscience : the official journal of the Society for Neuroscience, 23(31), 10052-7. [PubMed:14602819] [PMC] [WorldCat] - ↑
Lau, B., & Glimcher, P.W. (2008).
Value representations in the primate striatum during matching behavior. Neuron, 58(3), 451-63. [PubMed:18466754] [PMC] [WorldCat] [DOI] - ↑
Sugrue, L.P., Corrado, G.S., & Newsome, W.T. (2004).
Matching behavior and the representation of value in the parietal cortex. Science (New York, N.Y.), 304(5678), 1782-7. [PubMed:15205529] [WorldCat] [DOI] - ↑
Schultz, W., Apicella, P., Scarnati, E., & Ljungberg, T. (1992).
Neuronal activity in monkey ventral striatum related to the expectation of reward. The Journal of neuroscience : the official journal of the Society for Neuroscience, 12(12), 4595-610. [PubMed:1464759] [WorldCat] - ↑
Hikosaka, O., Sakamoto, M., & Usui, S. (1989).
Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. Journal of neurophysiology, 61(4), 814-32. [PubMed:2723722] [WorldCat] [DOI] - ↑
Bowman, E.M., Aigner, T.G., & Richmond, B.J. (1996).
Neural signals in the monkey ventral striatum related to motivation for juice and cocaine rewards. Journal of neurophysiology, 75(3), 1061-73. [PubMed:8867118] [WorldCat] [DOI] - ↑
Tachibana, Y., & Hikosaka, O. (2012).
The primate ventral pallidum encodes expected reward value and regulates motor action. Neuron, 76(4), 826-37. [PubMed:23177966] [PMC] [WorldCat] [DOI] - ↑ 32.0 32.1
Schoenbaum, G., Chiba, A.A., & Gallagher, M. (1998).
Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature neuroscience, 1(2), 155-9. [PubMed:10195132] [WorldCat] [DOI] - ↑
Cohen, J.Y., Haesler, S., Vong, L., Lowell, B.B., & Uchida, N. (2012).
Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature, 482(7383), 85-8. [PubMed:22258508] [PMC] [WorldCat] [DOI] - ↑
Sato, M., & Hikosaka, O. (2002).
Role of primate substantia nigra pars reticulata in reward-oriented saccadic eye movement. The Journal of neuroscience : the official journal of the Society for Neuroscience, 22(6), 2363-73. [PubMed:11896175] [PMC] [WorldCat] - ↑
Okada, K., Toyama, K., Inoue, Y., Isa, T., & Kobayashi, Y. (2009).
Different pedunculopontine tegmental neurons signal predicted and actual task rewards. The Journal of neuroscience : the official journal of the Society for Neuroscience, 29(15), 4858-70. [PubMed:19369554] [PMC] [WorldCat] [DOI] - ↑
Inoue, M., Oomura, Y., Aou, S., Nishino, H., & Sikdar, S.K. (1985).
Reward related neuronal activity in monkey dorsolateral prefrontal cortex during feeding behavior. Brain research, 326(2), 307-12. [PubMed:3971157] [WorldCat] [DOI] - ↑
Leon, M.I., & Shadlen, M.N. (1999).
Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque. Neuron, 24(2), 415-25. [PubMed:10571234] [WorldCat] [DOI] - ↑ 38.0 38.1
Roesch, M.R., & Olson, C.R. (2003).
Impact of expected reward on neuronal activity in prefrontal cortex, frontal and supplementary eye fields and premotor cortex. Journal of neurophysiology, 90(3), 1766-89. [PubMed:12801905] [WorldCat] [DOI] - ↑
Platt, M.L., & Glimcher, P.W. (1999).
Neural correlates of decision variables in parietal cortex. Nature, 400(6741), 233-8. [PubMed:10421364] [WorldCat] [DOI] - ↑
Sugrue, L.P., Corrado, G.S., & Newsome, W.T. (2004).
Matching behavior and the representation of value in the parietal cortex. Science (New York, N.Y.), 304(5678), 1782-7. [PubMed:15205529] [WorldCat] [DOI] - ↑
Shidara, M., & Richmond, B.J. (2002).
Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science (New York, N.Y.), 296(5573), 1709-11. [PubMed:12040201] [WorldCat] [DOI] - ↑
Asahi, T., Uwano, T., Eifuku, S., Tamura, R., Endo, S., Ono, T., & Nishijo, H. (2006).
Neuronal responses to a delayed-response delayed-reward go/nogo task in the monkey posterior insular cortex. Neuroscience, 143(2), 627-39. [PubMed:16979828] [WorldCat] [DOI] - ↑
Mizuhiki, T., Richmond, B.J., & Shidara, M. (2012).
Encoding of reward expectation by monkey anterior insular neurons. Journal of neurophysiology, 107(11), 2996-3007. [PubMed:22402653] [PMC] [WorldCat] [DOI] - ↑ 44.0 44.1
Schultz, W., Dayan, P., & Montague, P.R. (1997).
A neural substrate of prediction and reward. Science (New York, N.Y.), 275(5306), 1593-9. [PubMed:9054347] [WorldCat] [DOI] - ↑
Mirenowicz, J., & Schultz, W. (1994).
Importance of unpredictability for reward responses in primate dopamine neurons. Journal of neurophysiology, 72(2), 1024-7. [PubMed:7983508] [WorldCat] [DOI] - ↑
Waelti, P., Dickinson, A., & Schultz, W. (2001).
Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412(6842), 43-8. [PubMed:11452299] [WorldCat] [DOI] - ↑
Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y., & Hikosaka, O. (2004).
Dopamine neurons can represent context-dependent prediction error. Neuron, 41(2), 269-80. [PubMed:14741107] [WorldCat] [DOI] - ↑
Schultz, W., Stauffer, W.R., & Lak, A. (2017).
The phasic dopamine signal maturing: from reward via behavioural activation to formal economic utility. Current opinion in neurobiology, 43, 139-148. [PubMed:28390863] [WorldCat] [DOI] - ↑
Oyama, K., Hernádi, I., Iijima, T., & Tsutsui, K. (2010).
Reward prediction error coding in dorsal striatal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(34), 11447-57. [PubMed:20739566] [PMC] [WorldCat] [DOI] - ↑
Matsumoto, M., & Hikosaka, O. (2007).
Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 447(7148), 1111-5. [PubMed:17522629] [WorldCat] [DOI] - ↑
Reynolds, J.N., Hyland, B.I., & Wickens, J.R. (2001).
A cellular mechanism of reward-related learning. Nature, 413(6851), 67-70. [PubMed:11544526] [WorldCat] [DOI] - ↑
Calabresi, P., Picconi, B., Tozzi, A., & Di Filippo, M. (2007).
Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends in neurosciences, 30(5), 211-9. [PubMed:17367873] [WorldCat] [DOI] - ↑
Yagishita, S., Hayashi-Takagi, A., Ellis-Davies, G.C., Urakubo, H., Ishii, S., & Kasai, H. (2014).
A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science (New York, N.Y.), 345(6204), 1616-20. [PubMed:25258080] [PMC] [WorldCat] [DOI]
(執筆者:望月泰博、福田玄明、陳冲、中原裕之、担当編集委員:??)