「デルタ型グルタミン酸受容体」の版間の差分

編集の要約なし
 
(2人の利用者による、間の5版が非表示)
2行目: 2行目:
<font size="+1">
<font size="+1">
[https://researchmap.jp/read0060071/ 掛川 渉]</font><br>
[https://researchmap.jp/read0060071/ 掛川 渉]</font><br>
''慶應義塾大学医学部生理学教室''
慶應義塾大学医学部生理学教室<br>
<font size="+1">
[https://researchmap.jp/read0164509/ 幸田 和久]</font><br>
[https://researchmap.jp/read0164509/ 幸田 和久]</font><br>
''聖マリアンナ医科大学生理学教室''<br>
聖マリアンナ医科大学生理学教室<br>
DOI:<selfdoi /> 原稿受付日:2018年6月12日 原稿完成日:2018年10月14日<br>
DOI:<selfdoi /> 原稿受付日:2018年6月12日 原稿完成日:2018年11月17日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](京都大学大学院医学研究科システム神経薬理分野)<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](京都大学大学院医学研究科システム神経薬理分野)<br>
</div>
</div>
34行目: 35行目:
 [[AMPA型グルタミン酸受容体]]の[[GluA2]]サブユニットのC末端には[[GRIP]]が結合し、定常状態ではAMPA型グルタミン酸受容体はシナプス後部の細胞膜に繋留されている。平行線維刺激によって神経活動が亢進すると、シナプス後部に存在する[[代謝型グルタミン酸受容体1型]]([[mGluR1]])が活性化される。
 [[AMPA型グルタミン酸受容体]]の[[GluA2]]サブユニットのC末端には[[GRIP]]が結合し、定常状態ではAMPA型グルタミン酸受容体はシナプス後部の細胞膜に繋留されている。平行線維刺激によって神経活動が亢進すると、シナプス後部に存在する[[代謝型グルタミン酸受容体1型]]([[mGluR1]])が活性化される。


 同時に登上線維刺激あるいはプルキンエ細胞[[脱分極]]によって細胞内Ca濃度が上昇すると[[プロテインキナーゼC]]([[PKC]])が一定時間活性化される。PKCがGluA2サブユニットの[[セリン]]残基(S880)をリン酸化<ref name=Matsuda2000><pubmed>10856222</pubmed></ref> するとGRIPが乖離し、AMPA型グルタミン酸受容体が側方拡散できるようになり、棘突起周辺に存在する特定の部位に到達するとAMPA型グルタミン酸受容体はエンドサイトーシスされる。このような平行線維と登上線維活動亢進に引き続く一連の現象の結果、シナプス後部のAMPA型グルタミン酸受容体の数が減少し、平行線維シナプス伝達が減弱することがLTDの実体である('''図2''')。
 同時に登上線維刺激あるいはプルキンエ細胞[[脱分極]]によって細胞内Ca<sup>2+</sup>濃度が上昇すると[[プロテインキナーゼC]]([[PKC]])が一定時間活性化される。PKCがGluA2サブユニットの[[セリン]]残基(S880)をリン酸化<ref name=Matsuda2000><pubmed>10856222</pubmed></ref> するとGRIPが乖離し、AMPA型グルタミン酸受容体が側方拡散できるようになり、棘突起周辺に存在する特定の部位に到達するとAMPA型グルタミン酸受容体はエンドサイトーシスされる。このような平行線維と登上線維活動亢進に引き続く一連の現象の結果、シナプス後部のAMPA型グルタミン酸受容体の数が減少し、平行線維シナプス伝達が減弱することがLTDの実体である('''図2''')。


 GluA2-S880の近傍には[[チロシン]]残基(Y876)が存在し、Y876がリン酸化されているとLTD誘導に必要なPKCによるS880のリン酸化が抑制される。このチロシン残基はPTPMEGの基質であるため<ref name=Kohda2013><pubmed>23431139</pubmed></ref> 、GluD2のC末端に結合したPTPMEGがシナプス後部に存在すると、GluA2-Y876が脱リン酸化状態となりはじめてLTDが誘導可能な状態となる。
 GluA2-S880の近傍には[[チロシン]]残基(Y876)が存在し、Y876がリン酸化されているとLTD誘導に必要なPKCによるS880のリン酸化が抑制される。このチロシン残基はPTPMEGの基質であるため<ref name=Kohda2013><pubmed>23431139</pubmed></ref> 、GluD2のC末端に結合したPTPMEGがシナプス後部に存在すると、GluA2-Y876が脱リン酸化状態となりはじめてLTDが誘導可能な状態となる。
48行目: 49行目:
 近年の構造学的解析から、この3者コンプレックスはGluD2 : Cbln1 : ニューレキシン = 1(4量体): 2(6量体): 2(単量体)のストイキオメトリーで構成されていることが分かった<ref name=Elegheert2016><pubmed>27418511</pubmed></ref> 。
 近年の構造学的解析から、この3者コンプレックスはGluD2 : Cbln1 : ニューレキシン = 1(4量体): 2(6量体): 2(単量体)のストイキオメトリーで構成されていることが分かった<ref name=Elegheert2016><pubmed>27418511</pubmed></ref> 。


==== リガンド結合領域の機能―D-セリンLTD ====
==== リガンド結合領域の機能―<small>D</small>-セリンLTD ====
 GluD2のリガンド結合領域には[[D-セリン]]や[[グリシン]]が結合することが、構造学的研究から明らかになった。しかしD-セリン結合によってもGluD2はチャネル活性を示さない<ref name=Naur2007><pubmed>17715062</pubmed></ref> 。またこれらのリガンドと結合しないGluD2変異体('''図1''')を成熟したGluD2欠損マウスのプルキンエ細胞に発現させると、平行線維シナプスでのLTD障害とシナプス低形成をともに回復させる<ref name=Hirai2005><pubmed>15592450</pubmed></ref> 。したがって、GluD2のリガンド結合領域は少なくとも成熟後のプルキンエ細胞においてはLTDやシナプス形成には寄与しないと考えられる。
 GluD2のリガンド結合領域には[[D-セリン|<small>D</small>-セリン]]や[[グリシン]]が結合することが、構造学的研究から明らかになった。しかし<small>D</small>-セリン結合によってもGluD2はチャネル活性を示さない<ref name=Naur2007><pubmed>17715062</pubmed></ref> 。またこれらのリガンドと結合しないGluD2変異体('''図1''')を成熟したGluD2欠損マウスのプルキンエ細胞に発現させると、平行線維シナプスでのLTD障害とシナプス低形成をともに回復させる<ref name=Hirai2005><pubmed>15592450</pubmed></ref> 。したがって、GluD2のリガンド結合領域は少なくとも成熟後のプルキンエ細胞においてはLTDやシナプス形成には寄与しないと考えられる。


 一方、D-セリンを投与すると、培養プルキンエ細胞ではAMPA受容体のエンドサイトーシスが誘導され、小脳切片では平行線維-プルキンエ細胞シナプス伝達が低下して平行線維シナプスでLTDが起きる。GluD2欠損マウスや、リガンド結合部位GluD2変異体を発現するプルキンエ細胞ではこれらの現象は起きない。[[NMDA型グルタミン酸受容体]]阻害剤は、通常の平行線維の刺激条件で引き起こされるLTDを阻害するが、D-セリン投与によって誘導されるLTDには影響しない。このように、D-セリンがGluD2のリガンド結合領域に結合することによって、新たなシナプス可塑性(D-セリンLTD)が引き起こされることが明らかとなった。D-セリンLTDにおいても、通常のLTDと同様に、GluD2のC末端領域が必要である<ref name=Kakegawa2011><pubmed>21460832</pubmed></ref> 。
 一方、D-セリンを投与すると、培養プルキンエ細胞では[[AMPA型グルタミン酸受容体]]のエンドサイトーシスが誘導され、小脳切片では平行線維-プルキンエ細胞シナプス伝達が低下して平行線維シナプスでLTDが起きる。GluD2欠損マウスや、リガンド結合部位GluD2変異体を発現するプルキンエ細胞ではこれらの現象は起きない。[[NMDA型グルタミン酸受容体(NMDAR)]]阻害剤は、小脳介在神経に発現するNMDARとその下流の一酸化窒素産生経路を阻害することによって通常の平行線維の刺激条件で引き起こされるLTDを阻害することが知られている<ref name=Kono2018><pubmed>30382582</pubmed></ref> 。一方、<small>D</small>-セリン投与によって誘導されるLTDには影響しない。このように、<small>D</small>-セリンがGluD2のリガンド結合領域に結合することによって、新たなシナプス可塑性(<small>D</small>-セリンLTD)が引き起こされることが明らかとなった。<small>D</small>-セリンLTDにおいても、通常のLTDと同様に、GluD2のC末端領域が必要である<ref name=Kakegawa2011><pubmed>21460832</pubmed></ref> 。


 成熟後の小脳にはD-セリンはほとんど検出できないが、生後発達期には豊富に存在する。実際に生後発達期のマウスの小脳切片において、平行線維を高頻度刺激すると平行線維から放出される[[グルタミン酸]]がspilloverし、近接する[[Bergmannグリア]]のCa<sup>2+</sup>透過型AMPA受容体を活性化することによって、BergmannグリアからD-セリンが放出されることが分かった<ref name=Kakegawa2011><pubmed>21460832</pubmed></ref> 。
 成熟後の小脳には<small>D</small>-セリンはほとんど検出できないが、生後発達期には豊富に存在する。実際に生後発達期のマウスの小脳切片において、平行線維を高頻度刺激すると平行線維から放出される[[グルタミン酸]]がspilloverし、近接する[[Bergmannグリア]]のCa<sup>2+</sup>透過型AMPA受容体を活性化することによって、Bergmannグリアから<small>D</small>-セリンが放出されることが分かった<ref name=Kakegawa2011><pubmed>21460832</pubmed></ref> 。


 また生後発達期のマウスの小脳切片においては、平行線維の高頻度刺激とプルキンエ細胞の脱分極を組み合わせると、平行線維-プルキンエ細胞シナプスでD-セリンLTDが誘導される<ref name=Kakegawa2011><pubmed>21460832</pubmed></ref> 。D-セリンLTDは、幼若期の運動学習促進に重要な役割を果たしていることが示唆されている<ref name=Kakegawa2011><pubmed>21460832</pubmed></ref> 。
 また生後発達期のマウスの小脳切片においては、平行線維の高頻度刺激とプルキンエ細胞の脱分極を組み合わせると、平行線維-プルキンエ細胞シナプスで<small>D</small>-セリンLTDが誘導される<ref name=Kakegawa2011><pubmed>21460832</pubmed></ref> 。<small>D</small>-セリンLTDは、幼若期の運動学習促進に重要な役割を果たしていることが示唆されている<ref name=Kakegawa2011><pubmed>21460832</pubmed></ref> 。


==== 膜貫通領域の機能―GluD2はチャネルとして機能するか? ====
==== 膜貫通領域の機能―GluD2はチャネルとして機能するか? ====
63行目: 64行目:


==== 小脳以外に発現するGluD2 ====
==== 小脳以外に発現するGluD2 ====
 GluD2は小脳プルキンエ細胞に圧倒的に強く発現するが、小脳の[[分子層]][[介在ニューロン]]にも発現している<ref name=Yamasaki2011><pubmed>21368048</pubmed></ref> 。また小脳外では、[[大脳皮質]]、[[海馬]]、[[線条体]]、[[視床]]、[[中脳]]、[[網膜]]など、多くの領域に発現することが明らかになっている<ref name=Hepp2014><pubmed>25001082</pubmed></ref> 。Cblnファミリーには、Cbln1の他に[[Cbln2]]~[[Cbln4|4]]が存在し、これらも脳の様々な領域に発現していることから、小脳外におけるGluD2もCbln、ニューレキシンとともに、シナプス形成とシナプス可塑性に寄与していると考えられる。
 上述のように、GluD2は小脳以外の多くの領域にも発現している<ref name=Hepp2014><pubmed>25001082</pubmed></ref>。一方、Cblnファミリーには、Cbln1の他に[[Cbln2]]~[[Cbln4|4]]が存在し、これらも脳の様々な領域に発現していることから、小脳外におけるGluD2もCbln、ニューレキシンとともに、シナプス形成とシナプス可塑性に寄与していると考えられる。


== デルタ1受容体 ==
== デルタ1受容体 ==