「GABA」の版間の差分

32 バイト除去 、 2019年5月21日 (火)
Nijcadmin (トーク) による編集を WikiSysop による直前の版へ差し戻しました
(The LinkTitles extension automatically added links to existing pages (https://github.com/bovender/LinkTitles).)
(Nijcadmin (トーク) による編集を WikiSysop による直前の版へ差し戻しました)
タグ: 巻き戻し
 
1行目: 1行目:
<div align="right">   
<div align="right">   
<font size="+1">江藤 圭</font><[[br]]>
<font size="+1">江藤 圭</font><br>
''University of North Carolina at Chapel Hill, Department of Pharmacology''<br>
''University of North Carolina at Chapel Hill, Department of Pharmacology''<br>
<font size="+1">[http://researchmap.jp/read0192091 石橋 仁]</font><br>
<font size="+1">[http://researchmap.jp/read0192091 石橋 仁]</font><br>
74行目: 74行目:


== GABAとは==
== GABAとは==
 &gamma;-アミノ酪酸 (&gamma;-aminobutyric acid, GABA)は、[[wikipedia:ja:イモ|イモ]]などの植物に含まれるアミノ酸として古くから知られていたが、1950年代になって、[[wj:林髞|林髞]]らにより脳にGABAを注入すると抑制作用を示すことが明らかにされ<ref name=ref4><[[pubmed]]>13590228</pubmed></ref>、1966年には[[wj:大塚正徳|大塚正徳]]らが、[[wj:ザリガニ|ザリガニ]]の[[神経筋接合部]]においてGABAが刺激に応じて放出されることを証明し、GABAの[[抑制性伝達物質]]としての同定に寄与した<ref name=ref5><pubmed>5230136</pubmed></ref>。その後、1967年に[[w:Krešimir Krnjević|Krnjevic]]とSchwartzがGABAが抑制性神経伝達物質であると証明し<ref name=ref6><pubmed>6031164</pubmed></ref>、今日では、[[wikipedia:ja:哺乳動物|哺乳動物]]の[[中枢神経系]]において、GABAが抑制性伝達物質であることは広く認識されている。もちろん、GABAは中枢神経系以外にも、さまざまな非神経組織に存在して、その組織特有の生理機能を有していると考えられている。  
 &gamma;-アミノ酪酸 (&gamma;-aminobutyric acid, GABA)は、[[wikipedia:ja:イモ|イモ]]などの植物に含まれるアミノ酸として古くから知られていたが、1950年代になって、[[wj:林髞|林髞]]らにより脳にGABAを注入すると抑制作用を示すことが明らかにされ<ref name=ref4><pubmed>13590228</pubmed></ref>、1966年には[[wj:大塚正徳|大塚正徳]]らが、[[wj:ザリガニ|ザリガニ]]の[[神経筋接合部]]においてGABAが刺激に応じて放出されることを証明し、GABAの[[抑制性伝達物質]]としての同定に寄与した<ref name=ref5><pubmed>5230136</pubmed></ref>。その後、1967年に[[w:Krešimir Krnjević|Krnjevic]]とSchwartzがGABAが抑制性神経伝達物質であると証明し<ref name=ref6><pubmed>6031164</pubmed></ref>、今日では、[[wikipedia:ja:哺乳動物|哺乳動物]]の[[中枢神経系]]において、GABAが抑制性伝達物質であることは広く認識されている。もちろん、GABAは中枢神経系以外にも、さまざまな非神経組織に存在して、その組織特有の生理機能を有していると考えられている。  


==生合成==
==生合成==
 脳内では主に、[[グルタミン酸デカルボキシラーゼ]]([[w:Glutamic acid|glutamic acid]] decarboxylase; GAD)による脱炭酸によって、[[グルタミン酸]]から産生される<ref name=ref7><pubmed>2069816</pubmed></ref>。このGADには、 分子量が 65300と66600の2つのアイソフォーム([[GAD65]]と[[GAD67]])が知られており、どちらも同一の抑制性神経細胞に存在するが、GAD67が[[細胞質]]全体に存在するのに対してGAD65は[[神経終末]]部に豊富に存在することから<ref name=ref8><pubmed>8126575</pubmed></ref>、GAD65が抑制性シナプス伝達を担うGABA合成に関与すると考えられている<ref name=ref9><pubmed>9871412</pubmed></ref>。
 脳内では主に、[[グルタミン酸デカルボキシラーゼ]](glutamic acid decarboxylase; GAD)による脱炭酸によって、[[グルタミン酸]]から産生される<ref name=ref7><pubmed>2069816</pubmed></ref>。このGADには、 分子量が 65300と66600の2つのアイソフォーム([[GAD65]]と[[GAD67]])が知られており、どちらも同一の抑制性神経細胞に存在するが、GAD67が[[細胞質]]全体に存在するのに対してGAD65は[[神経終末]]部に豊富に存在することから<ref name=ref8><pubmed>8126575</pubmed></ref>、GAD65が抑制性シナプス伝達を担うGABA合成に関与すると考えられている<ref name=ref9><pubmed>9871412</pubmed></ref>。


 GABAの合成に関しては、[[wikipedia:ja:TCAサイクル|TCAサイクル]]の[[wikipedia:ja:α-ケトグルタル酸|α-ケトグルタル酸]]からグルタミン酸を経由してGABAが合成される経路がある<ref name=ref10><pubmed>10412025</pubmed></ref>。また、神経終末部では、細胞外から[[グルタミン酸輸送体]]により、グルタミン酸が取り込まれてGAD65によりGABAが合成される。GABAの分解過程では、GABAは[[GABAアミノ基転移酵素]]により[[コハク酸セミアルデヒド]]となり、その後酸化されて[[コハク酸]]となりTCAサイクルに入る。
 GABAの合成に関しては、[[wikipedia:ja:TCAサイクル|TCAサイクル]]の[[wikipedia:ja:α-ケトグルタル酸|α-ケトグルタル酸]]からグルタミン酸を経由してGABAが合成される経路がある<ref name=ref10><pubmed>10412025</pubmed></ref>。また、神経終末部では、細胞外から[[グルタミン酸輸送体]]により、グルタミン酸が取り込まれてGAD65によりGABAが合成される。GABAの分解過程では、GABAは[[GABAアミノ基転移酵素]]により[[コハク酸セミアルデヒド]]となり、その後酸化されて[[コハク酸]]となりTCAサイクルに入る。
92行目: 92行目:
=== GABA<sub>A</sub>とGABA<sub>C</sub>受容体を介した機能 ===
=== GABA<sub>A</sub>とGABA<sub>C</sub>受容体を介した機能 ===


 GABA<sub>A</sub>とGABA<sub>C</sub>受容体は[[イオンチャネル型受容体]]で、[[wj:塩化物イオン|塩化物イオン]] (Cl<sup>-</sup>[[イオン]])を主に透過させる。GABA<sub>A</sub>受容体はαサブユニット、βサブユニット、γサブユニット、δサブユニット、εサブユニットなどによって構成される五量体であるが、脳部位によってサブユニットの発現が異なっている。また、構成サブユニットの違いにより薬物に対する感受性も異なる。GABA<sub>C</sub>受容体は ρサブユニットで形成される五量体であり、GABA<sub>A</sub>受容体を抑制する[[ビククリン]]に感受性がないなど、GABA<sub>A</sub>受容体とは薬物感受性がかなり異なっている<ref name=ref13 />。GABA<sub>A</sub>受容体は[[ゲフィリン]]という足場タンパク質によりシナプス部位に維持される<ref name=ref14><pubmed>24552784</pubmed></ref>。  
 GABA<sub>A</sub>とGABA<sub>C</sub>受容体は[[イオンチャネル型受容体]]で、[[wj:塩化物イオン|塩化物イオン]] (Cl<sup>-</sup>イオン)を主に透過させる。GABA<sub>A</sub>受容体はαサブユニット、βサブユニット、γサブユニット、δサブユニット、εサブユニットなどによって構成される五量体であるが、脳部位によってサブユニットの発現が異なっている。また、構成サブユニットの違いにより薬物に対する感受性も異なる。GABA<sub>C</sub>受容体は ρサブユニットで形成される五量体であり、GABA<sub>A</sub>受容体を抑制する[[ビククリン]]に感受性がないなど、GABA<sub>A</sub>受容体とは薬物感受性がかなり異なっている<ref name=ref13 />。GABA<sub>A</sub>受容体は[[ゲフィリン]]という足場タンパク質によりシナプス部位に維持される<ref name=ref14><pubmed>24552784</pubmed></ref>。  


 GABA<sub>A</sub>およびGABA<sub>C</sub>受容体を介した抑制効果は、神経細胞内の塩化物イオン濃度により変化する。通常、成熟期の神経細胞内塩化物イオン濃度は低く保たれており、塩化物イオンの[[平衡電位]]は[[静止電位]]よりも[[過分極]]側にあるため、GABA<sub>A</sub>受容体およびGABA<sub>C</sub>受容体の応答は過分極性である。しかし、発達期においてGABAは[[脱分極]]作用(興奮性作用)を示すことがある。これは、細胞内から塩化物イオンを排出する役割を担うトランスポーターの機能や発現が、成熟期の神経細胞と異なるためである<ref name=ref15><pubmed>11371348</pubmed></ref> <ref name=ref16><pubmed>14741396</pubmed></ref>。
 GABA<sub>A</sub>およびGABA<sub>C</sub>受容体を介した抑制効果は、神経細胞内の塩化物イオン濃度により変化する。通常、成熟期の神経細胞内塩化物イオン濃度は低く保たれており、塩化物イオンの[[平衡電位]]は[[静止電位]]よりも[[過分極]]側にあるため、GABA<sub>A</sub>受容体およびGABA<sub>C</sub>受容体の応答は過分極性である。しかし、発達期においてGABAは[[脱分極]]作用(興奮性作用)を示すことがある。これは、細胞内から塩化物イオンを排出する役割を担うトランスポーターの機能や発現が、成熟期の神経細胞と異なるためである<ref name=ref15><pubmed>11371348</pubmed></ref> <ref name=ref16><pubmed>14741396</pubmed></ref>。