「視細胞」の版間の差分

4,497 バイト除去 、 2019年8月12日 (月)
編集の要約なし
編集の要約なし
94行目: 94行目:


==参考文献==
==参考文献==
1. Schultze M
<references />
Zür Anatomie und Physiologie der Retina.
Archiv für mikroskopische anatomie,  1866, Band 2, 175-286.
 
2. Stabell B, Stabell B
Duplicity Theory of Vision: From Newton to the Present
Cambridge University Press, 2013, ISBN-13: 978-1107412842
 
3. Lamb TD, Collin [[SP]], Pugh EN Jr.
Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup.
Nat Rev Neurosci. 2007 Dec;8(12):960-76.
 
4. Hárosi FI.
Absorption spectra and linear dichroism of some amphibian photoreceptors.
J Gen Physiol. 1975 Sep;66(3):357-82.
 
5. Pugh EN Jr, Lamb TD.
Amplification and kinetics of the activation steps in phototransduction.
Biochim Biophys Acta. 1993 Mar 1;1141(2-3):111-49.
 
6. Fu Y, Yau KW.
Phototransduction in mouse rods and cones.
Pflugers Arch. 2007 Aug;454(5):805-19. Epub 2007 Jan 17.
 
7. Kawamura S, Tachibanaki S.
Rod and cone photoreceptors: molecular basis of the difference in their physiology.
Comp Biochem Physiol A Mol Integr Physiol. 2008 Aug;150(4):369-77.
8. Yau KW, Baylor DA.
Cyclic GMP-activated conductance of retinal photoreceptor cells.
Annu Rev Neurosci. 1989;12:289-327.
 
9. Fain GL, Matthews HR, Cornwall MC, Koutalos Y.
Adaptation in vertebrate photoreceptors.
Physiol Rev. 2001 Jan;81(1):117-151.
 
10. Gray-Keller MP, Detwiler PB.
The [[calcium]] feedback signal in the phototransduction cascade of vertebrate rods.
Neuron. 1994 Oct;13(4):849-61.
 
11.  Kawamura S, Murakami M.
Calcium-dependent regulation of cyclic GMP phosphodiesterase by a protein from frog reinal rods.
Nature. 1991 Jan 31;349(6308):420-3.
 
12. Sampath AP, Strissel KJ, Elias R, Arshavsky VY, McGinnis JF, Chen J, Kawamura S, Rieke F, Hurley JB.
Recoverin improves rod-mediated vision by enhancing signal transmission in the mouse retina.
Neuron. 2005 May 5;46(3):413-20.
 
13. Sakurai K, Chen J, Khani SC, Kefalov VJ.
Regulation of mammalian cone phototransduction by recoverin and rhodopsin kinase.
J Biol Chem. 2015 Apr 3;290(14):9239-50.
 
14. Dizhoor AM, Olshevskaya EV, Henzel WJ, Wong SC, Stults JT, Ankoudinova I, Hurley JB.
Cloning, sequencing, and expression of a 24-kDa Ca(2+)-binding protein activating photoreceptor guanylyl cyclase.
J Biol Chem. 1995 Oct 20;270(42):25200-6.
 
15. Mendez A, Burns ME, Sokal I, Dizhoor AM, Baehr W, Palczewski K, Baylor DA, Chen J.
Role of guanylate cyclase-activating proteins (GCAPs) in setting the flash sensitivity of rod photoreceptors.
Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9948-53.
 
16. Hsu YT, Molday RS.
Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin.
Nature. 1993 Jan 7;361(6407):76-9.
 
17. Tachibanaki S, Yonetsu S, Fukaya S, Koshitani Y, Kawamura S.
Low activation and fast inactivation of transducin in carp cones.
J Biol Chem. 2012 Nov 30;287(49):41186-94.
 
18. Kawamura S, Tachibanaki S.
Explaining the functional differences of rods versus cones
WIREs Membr Transp Signal 2012, 1:675–683.
 
 
 
図の説明
 
図1 眼球(左)・網膜(右)の断面の模式図。
 
図2 桿体と錐体。魚類(コイ)の網膜から単離した桿体、錐体の写真と、それぞれの細胞の模式図を示す。なお、写真に示した単離細胞では、細胞体と神経終末が失われている。
 
図3 視細胞の応答形成の分子メカニズム。光を受容した後に膜電位を過分極させ応答を引き起こす反応群(黄矢印)と、過分極した膜電位をもとに戻して細胞の応答を停止させる反応群(黒矢印)にわけられる。この仕組みは、桿体・錐体で共通であるが、反応によっては反応速度・効率が異なる場合がある。
 
図4 桿体・錐体の光に対する応答の違い。
上パネル、桿体と錐体(赤感受性錐体)の応答の記録。吸引電極法と呼ばれる方法により、外節の形質膜を横切って流入する電流を測定した。様々な強度の刺激光(フラッシュ光)に対する応答を重ね書きして示してある。刺激が強くなるにつれ、応答は大きくなる。錐体の応答は桿体より短い。応答が飽和すると、電流は0になる。(Copyright (2008) Elsevier)
下パネル、コイの桿体及び錐体に与えた光の強度と応答のピークの大きさの関係をプロットした(刺激応答曲線)。桿体の方が錐体よりも弱い光で応答できる(すなわち、感度が高い)。(Copyright (2001) National Academy of Sciences)