「アセチルコリン」の版間の差分

 
(3人の利用者による、間の6版が非表示)
2行目: 2行目:
<font size="+1">[http://researchmap.jp/read0127493/?lang=japanese 三澤 日出巳]</font><br>
<font size="+1">[http://researchmap.jp/read0127493/?lang=japanese 三澤 日出巳]</font><br>
''慶應義塾大学 薬学部''<br>
''慶應義塾大学 薬学部''<br>
DOI:<selfdoi /> 原稿受付日:2013年1月15日 原稿完成日:2013年7月22日<br>
DOI:<selfdoi /> 原稿受付日:2013年1月15日 原稿完成日:2013年7月22日 原稿改訂日:2017年9月20日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](独立行政法人理化学研究所 脳科学総合研究センター)
</div>
</div>
75行目: 75行目:
== 生合成 ==
== 生合成 ==


 [[コリンアセチル転移酵素]]([[acetyl-CoA: choline O-acetyltransferase]]; ChAT, EC 2.3.1.6)によりコリンと[[wikipedia:ja:アセチルCoA|アセチルCoA]]から合成される。ChATは細胞質に存在する可溶性タンパク質であるが、神経[[軸索]]を経て終末部に運ばれる。ChATの[[wikipedia:ja:比活|比活]]性(specific activity)は極めて高く、通常の条件では、連続した神経活動時にもアセチルコリンが不足することはない。ChATのコリンに対する[[親和性]]([[Km]])は細胞内のコリン濃度に比べて大きいため、コリンの供給がアセチルコリン合成の律速段階となる。ChATの特異[[wikipedia:ja:抗体|抗体]]による[[免疫組織化学]]がアセチルコリンを合成する神経(コリン作動性神経)の[[細胞体]]や軸索を同定する目的で繁用される<ref name=ref1><pubmed>10594838</pubmed></ref>。
 [[コリンアセチル転移酵素]]([[acetyl-CoA: choline O-acetyltransferase]]; ChAT, EC 2.3.1.6)によりコリンと[[wikipedia:ja:アセチルCoA|アセチルCoA]]から合成される。ChATは細胞質に存在する可溶性タンパク質であるが、神経[[軸索]]を経て終末部に運ばれる。ChATの[[wikipedia:ja:比活|比活]]性(specific activity)は極めて高く、通常の条件では、連続した神経活動時にもアセチルコリンが不足することはない。ChATのコリンに対する[[親和性]]([[Km]])は細胞内のコリン濃度に比べて大きいため、コリンの供給がアセチルコリン合成の律速段階となる。ChATの特異[[wikipedia:ja:抗体|抗体]]による[[免疫組織化学]]がアセチルコリンを合成する神経(コリン作動性神経)の[[細胞体]]や軸索を同定する目的で汎用される<ref name=ref1><pubmed>10594838</pubmed></ref>。


== コリンの取り込み ==  
== コリンの取り込み ==  
101行目: 101行目:
nicotinic acetylcholine receptor; nAChR
nicotinic acetylcholine receptor; nAChR


 陽イオン選択性の[[イオンチャネル内蔵型受容体]]であり、アセチルコリンやニコチンが結合すると、ごく短時間(ミリ秒単位)にNa<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>などのイオン透過性が亢進する。nAChRは、神経筋接合部、自律神経節、副腎髄質、中枢神経系などに分布する。ニコチン受容体は、類似構造をもつ複数サブユニットが会合した5量体として機能する。様々な動物種で、α (α1〜10), β (β1〜4), γ, δ, εの17種類のサブユニットが存在し、それらの組み合わせにより骨格筋型(Nm)と神経型(Nn)に大別される。骨格筋型nAChRはα1が2個, β1, δ, γ(またはε) が各1個の5量体からなる。神経型nAChRは、αとβからなるヘテロ5量体、あるいは同一のαからなるホモ5量体の構造をとるが、サブユニット構成により高度に多様性に富み、それぞれ独自のチャネル特性を持つとされる。1つのnAChRには2分子のアセチルコリンが結合してチャネルを開口させる。[[パンクロニウム]]、[[ベクロニウム]]などのNmを遮断する薬物は筋弛緩薬である。[[バレニクリン]]はnAChRの部分作動薬で、ニコチン依存症に対する[[wikipedia:ja:禁煙補助薬|禁煙補助薬]]として用いられる。重症筋無力症では、筋肉型nAChRに対する自己抗体の産生が報告されている。
 陽イオン選択性の[[イオンチャネル内蔵型受容体]]であり、アセチルコリンやニコチンが結合すると、ごく短時間(ミリ秒単位)にNa<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>などのイオン透過性が亢進する。nAChRは、神経筋接合部、自律神経節、副腎髄質、中枢神経系などに分布する。ニコチン受容体は、類似構造をもつ複数サブユニットが会合した5量体として機能する。様々な動物種で、α (α1〜10), β (β1〜4), γ, δ, εの17種類のサブユニットが存在し、それらの組み合わせにより骨格筋型(Nm)と神経型(Nn)に大別される。骨格筋型nAChRはα1が2個, β1, δ, γ(またはε) が各1個の5量体からなる。神経型nAChRは、αとβからなるヘテロ5量体、あるいは同一のαからなるホモ5量体の構造をとるが、サブユニット構成により高度に多様性に富み、それぞれ独自のチャネル特性を持つとされる。1つのnAChRには2分子のアセチルコリンが結合してチャネルを開口させる。[[パンクロニウム]]、[[ベクロニウム]]などのNmを遮断する薬物は筋弛緩薬である。[[バレニクリン]]はnAChRの部分作動薬で、[[依存症#ニコチン|ニコチン依存症]]に対する[[wj:禁煙補助薬|禁煙補助薬]]として用いられる。重症筋無力症では、筋肉型nAChRに対する自己抗体の産生が報告されている。


=== ムスカリン性アセチルコリン受容体 ===
=== ムスカリン性アセチルコリン受容体 ===
152行目: 152行目:


 脚橋被蓋核と背外側被蓋核コリン作動性神経は上行性と下降性の2種類の投射経路をもつ<ref name=ref11><pubmed>9219969</pubmed></ref>。視床へ投射する上行性投射系は、[[網様体賦活系]]の一部として[[睡眠]]サイクルや[[覚醒]]レベルの調節に関与する。脳幹網様体へ投射する下降性投射系は[[歩行運動]]、[[姿勢反射]]、筋緊張の調節などに関与する。また、脚橋被蓋核のコリン作動性神経は視床のほか大脳基底核にも投射する。特に、黒質緻密部のドーパミン神経細胞に投射して、ドーパミンの放出を促進する。パーキンソン病患者では、この部位のコリン作動性神経が減少することでドーパミン放出が減弱していることも病状の一因になると考えられている<ref name=ref12><pubmed>3475716</pubmed></ref>。
 脚橋被蓋核と背外側被蓋核コリン作動性神経は上行性と下降性の2種類の投射経路をもつ<ref name=ref11><pubmed>9219969</pubmed></ref>。視床へ投射する上行性投射系は、[[網様体賦活系]]の一部として[[睡眠]]サイクルや[[覚醒]]レベルの調節に関与する。脳幹網様体へ投射する下降性投射系は[[歩行運動]]、[[姿勢反射]]、筋緊張の調節などに関与する。また、脚橋被蓋核のコリン作動性神経は視床のほか大脳基底核にも投射する。特に、黒質緻密部のドーパミン神経細胞に投射して、ドーパミンの放出を促進する。パーキンソン病患者では、この部位のコリン作動性神経が減少することでドーパミン放出が減弱していることも病状の一因になると考えられている<ref name=ref12><pubmed>3475716</pubmed></ref>。
===海馬===
 [[海馬]]は[[内側中隔野]]や[[対角帯垂直脚]]からコリン作動性神経の投射を受ける。アセチルコリンは[[錐体細胞]]や[[介在ニューロン]]のnAChRやmAChRに作用することで、[[記憶]]の形成や強化に関与するとされる。
 アセチルコリンは錐体細胞の興奮と抑制のバランス調整に関与するが、そのメカニズムとしては、錐体細胞への直接作用と介在神経が関与する間接作用が知られている。nAChRとmAChRではその発現部位と作用が異なるため、コリン作動性神経の入力強度の違いにより、アセチルコリンは錐体細胞に対して興奮・抑制の二面性の作用をもたらす。
 また、アセチルコリンは[[シナプス長期増強]]([[long-term potentiation]]; [[LTP]])や[[シナプス長期抑圧]]([[long-term depression]]; [[LTD]])などの[[シナプス可塑性]]に関与することが示されているが、nAChRやmAChRを刺激するタイミングや強度、他の神経伝達物質による入力との相互作用など、複雑な時空間制御をうける。アセチルコリンは海馬を含む神経回路での[[ネットワーク・オシレーション]]の制御にも関与する<ref name=ref13><pubmed>23908628</pubmed></ref>。


== 非神経性アセチルコリン ==
== 非神経性アセチルコリン ==


 アセチルコリンは、[[wikipedia:ja:真性細菌|真性細菌]]などの[[wikipedia:ja:原核生物|原核生物]]を始めとして、ほぼすべての生物での存在が報告されている<ref name=ref13><pubmed>17363003</pubmed></ref>。植物では水や[[wikipedia:ja:電解質|電解質]]、栄養物質などの輸送に関与するとされるが、その生理的役割は不明な点が多い。[[wikipedia:ja:タケノコ|タケノコ]]の先端部には、[[wikipedia:ja:哺乳動物|哺乳動物]]の脳をはるかに超える量のアセチルコリンが含まれている<ref name=ref14><pubmed>12559395</pubmed></ref>。ヒトを含めた哺乳動物では、様々な非神経細胞や組織でアセチルコリンの合成と放出が確認されている。このうち、[[wikipedia:ja:免疫|免疫]]系細胞、[[wikipedia:ja:血管内皮細胞|血管内皮細胞]]、[[wikipedia:ja:胎盤|胎盤]]、[[wikipedia:ja:ケラチノサイト|ケラチノサイト]]、[[wikipedia:ja:気道上皮細胞|気道上皮細胞]]、[[wikipedia:ja:消化管上皮細胞|消化管上皮細胞]]、[[wikipedia:ja:膀胱上皮細胞|膀胱上皮細胞]]などでは、神経系とは独立した非神経性アセチルコリンが局所の細胞間情報伝達を担うことが報告されている<ref name=ref15><pubmed>23141771</pubmed></ref>。
 アセチルコリンは、[[wikipedia:ja:真性細菌|真性細菌]]などの[[wikipedia:ja:原核生物|原核生物]]を始めとして、ほぼすべての生物での存在が報告されている<ref name=ref14><pubmed>17363003</pubmed></ref>。植物では水や[[wikipedia:ja:電解質|電解質]]、栄養物質などの輸送に関与するとされるが、その生理的役割は不明な点が多い。[[wikipedia:ja:タケノコ|タケノコ]]の先端部には、[[wikipedia:ja:哺乳動物|哺乳動物]]の脳をはるかに超える量のアセチルコリンが含まれている<ref name=ref15><pubmed>12559395</pubmed></ref>
 
 [[ヒト]]を含めた[[哺乳動物]]では、様々な非神経細胞や組織でアセチルコリンの合成と放出が確認されている。このうち、[[wikipedia:ja:免疫|免疫]]系細胞、[[wikipedia:ja:血管内皮細胞|血管内皮細胞]]、[[wikipedia:ja:胎盤|胎盤]]、[[wikipedia:ja:ケラチノサイト|ケラチノサイト]]、[[wikipedia:ja:気道上皮細胞|気道上皮細胞]]、[[wikipedia:ja:消化管上皮細胞|消化管上皮細胞]]、[[wikipedia:ja:膀胱上皮細胞|膀胱上皮細胞]]などでは、神経系とは独立した非神経性アセチルコリンが局所の[[細胞間情報伝達]]を担うことが報告されている<ref name=ref16><pubmed>28552584</pubmed></ref>。
 
== コリン作動性抗炎症反応 ==
 
cholinergic anti-inflammatory pathway
 
 迷走神経の刺激 (vagal nerve stimulation; VNS) により誘導される全身性の抗炎症反応のこと。
 
 迷走神経には、中枢神経系の情報を末梢臓器に伝える遠心性の副交感神経と、末梢臓器からの感覚情報を中枢神経系に伝える求心性の[[内臓知覚神経]]が走行している。[[齧歯類]]では、迷走神経の実験的切断は敗血症による炎症やショックによる致死率を高めること、電気的にVNSを行うことで[[wj:敗血症|敗血症]]、[[wj:関節リウマチ|関節リウマチ]]、[[wj:炎症腸疾患|炎症腸疾患]]などの疾患モデルでの[[wj:炎症性サイトカイン|炎症性サイトカイン]] ([[wj:TNF&alpha;|TNF&alpha;]]や[[wj:IL-6|IL-6]]など)の産生が著明に抑制されて病状が緩解することが報告されている<ref name=ref17><pubmed>27059884</pubmed></ref>。この反応経路には、AChと[[α7 ニコチン性アセチルコリン受容体]]が必要であることから”コリン作動性“と呼ばれているが、そのメカニズムは不明な点が多い。
 
 なお医療現場では、[[迷走神経刺激装置]]VNSシステムは難治性[[てんかん]]や[[うつ病]]の治療法として承認され、すでに各国で多くの臨床実績をもつ。その有用性は高いとされるが、メカニズムは完全には解明されていない。


==関連項目 ==
==関連項目 ==