16,040
回編集
Junko kurahashi (トーク | 投稿記録) 細 (→センダイウイルスベクター) |
細編集の要約なし |
||
(2人の利用者による、間の11版が非表示) | |||
2行目: | 2行目: | ||
<font size="+1">[https://researchmap.jp/hirokazuhirai 平井宏和]</font><br> | <font size="+1">[https://researchmap.jp/hirokazuhirai 平井宏和]</font><br> | ||
''群馬大学 医学系研究科''<br> | ''群馬大学 医学系研究科''<br> | ||
DOI:<selfdoi /> | DOI:<selfdoi /> 原稿受付日:2018年3月27日 原稿完成日:2018年7月27日<br> | ||
担当編集委員:[https://researchmap.jp/michisukeyuzaki 柚崎通介](慶應義塾大学 医学研究科)<br> | 担当編集委員:[https://researchmap.jp/michisukeyuzaki 柚崎通介](慶應義塾大学 医学研究科)<br> | ||
</div> | </div> | ||
英語名:viral vector 独:Viraler Vektor 仏:vecteur viral | 英語名:viral vector 独:Viraler Vektor 仏:vecteur viral | ||
{{box|text= | {{box|text= 細胞に吸着したウイルスは、自らのゲノムを細胞内に送り込み、細胞がもつ転写翻訳機構を利用してゲノムを複製し増殖する。遺伝子操作により、複製および増殖能を欠損させたウイルス(増殖力等欠損株)や、複製・増殖能の一部を保持したウイルスに外来遺伝子を組み込み、効率的に目的の遺伝子を細胞へ導入し発現させる能力を利用したものをウイルスベクターという。細胞への遺伝子導入効率は、エレクトロポレーションやリン酸カルシウム法などの物理化学的な導入法よりはるかに優れており、遺伝子導入が困難な生体ニューロンへの遺伝子発現実験や遺伝子治療に広く使用されている。}} | ||
== | ==イントロダクション== | ||
ウイルスベクターを用いると、培養細胞や生体に効率的に外来遺伝子を導入することができるため、1970年代ごろから開発がはじまり、90年代には先天性酵素欠損に対する遺伝子治療用ベクターとしてアデノウイルスベクターが世界中で使用されるようになった。1999年にアデノウイルスベクターの大量投与による患者死亡が報告され、また2000年代になり、レトロウイルスベクターを用いた先天性免疫不全症に対する遺伝子治療後に白血病が発症したことで、ウイルスベクターを用いた遺伝子治療は停滞期に入った。しかし2008年以降、レンチウイルスベクターやアデノ随伴ウイルスベクターを用いた単一遺伝子疾患に対する遺伝子治療の成功例が相次ぎ、遺伝子治療研究と臨床応用が再興期に入った。時期を同じくして発見され、大きく進展したゲノム編集技術における遺伝子導入用ツールとしてウイルスベクターが爆発的に使われるようになり、近年、基礎研究はもちろん、トランスレーショナルリサーチ、遺伝子治療におけるウイルスベクターの重要性は飛躍的に高まっている。 | |||
== 作製の概要 == | == 作製の概要 == | ||
複製等に関与する非構造タンパク質をコードしている領域および、[[カプシド]]などの構造タンパク質をコードしている領域を欠損し、代わりに目的の遺伝子を挿入したウイルス[[プラスミド]]と、非構造タンパク質と構造タンパク質を供給するプラスミド(さらにウイルスによっては別に必要となる遺伝子を供給するプラスミド)を、[[HEK293細胞]]や[[NIH3T3細胞]]などの[[培養細胞]] | 複製等に関与する非構造タンパク質をコードしている領域および、[[カプシド]]などの構造タンパク質をコードしている領域を欠損し、代わりに目的の遺伝子を挿入したウイルス[[プラスミド]]と、非構造タンパク質と構造タンパク質を供給するプラスミド(さらにウイルスによっては別に必要となる遺伝子を供給するプラスミド)を、[[HEK293細胞]]や[[NIH3T3細胞]]などの[[培養細胞]]に同時に導入し、細胞内でウイルス粒子を産生させる。産生されたウイルスはウイルスプラスミドに組み込んだ目的遺伝子をもつが、(一部の腫瘍治療用ウイルスを除き)非構造タンパク質および構造タンパク質をコードする遺伝子を欠損するため、細胞に吸着・侵入して目的の遺伝子を発現するが、複製・増殖能はない。 | ||
== 種類 == | == 種類 == | ||
19行目: | 19行目: | ||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ 表1.ベクターとして利用される代表的なウイルス | ||
! 種類 !! アデノウイルス !! シンドビスウイルス、セムリキ森林ウイルス !! レトロウイルス !! レンチウイルス !! 狂犬病ウイルス !! センダイウイルス !! アデノ随伴ウイルス | ! 種類 !! アデノウイルス !! シンドビスウイルス、セムリキ森林ウイルス !! 単純ヘルペスウィルス !!レトロウイルス !! レンチウイルス !! 狂犬病ウイルス !! センダイウイルス !! アデノ随伴ウイルス | ||
|- | |- | ||
| 分類 || アデノウイルス科、マストアデノウイルス属 || トガウイルス科、アフファウイルス属 || | | 分類 || アデノウイルス科、マストアデノウイルス属 || トガウイルス科、アフファウイルス属 || ヘルペスウイルス科、アルファヘルペスウイルス亜科、シンプレックスウイルス属 || レトロウイルス科、オンコウイルス亜科、ヘルペスウイルス科、アルファヘルペスウイルス亜科、シンプレックスウイルス属 || レトロウイルス科、レンチウイルス亜科 || ラブドウイルス科、リッサウイルス属 || パラミクソウイルス科、レスピロウイルス属(マウスパラインフルエンザ1型ウイルス) || パルボウイルス科、ディペンドウイルス属 | ||
|- | |- | ||
| 疾患 || カゼ症候群 || 関節炎、発疹、発熱 || マウス白血病 || AIDS || 狂犬病 || マウス肺炎 || 病原性なし | | 疾患 || カゼ症候群 || 関節炎、発疹、発熱 || 口内炎、角膜炎、脳炎 || マウス白血病 || AIDS || 狂犬病 || マウス肺炎 || 病原性なし | ||
|- | |- | ||
| 核酸 || 2本鎖DNA || 1本鎖RNA +鎖 || 1本鎖RNA +鎖 || 1本鎖RNA +鎖 || 1本鎖RNA -鎖 || 1本鎖RNA -鎖 || 1本鎖DNA | | 核酸 || 2本鎖DNA || 1本鎖RNA +鎖 || 2本鎖DNA || 1本鎖RNA +鎖 || 1本鎖RNA +鎖 || 1本鎖RNA -鎖 || 1本鎖RNA -鎖 || 1本鎖DNA | ||
|- | |- | ||
| 形態 || 正20面体カプシド || 正20面体カプシド || 正20面体 || 正20面体 || 円筒形 || 多形らせんヌクレオカプシド || 正20面体カプシド | | 形態 || 正20面体カプシド || 正20面体カプシド || 正20面体カプシド || 正20面体 || 正20面体 || 円筒形 || 多形らせんヌクレオカプシド || 正20面体カプシド | ||
|- | |- | ||
| 大きさ(nm) || 70-90 || 約70 || 80-100 || 80-100 || 180(長)、75(径) || 150-250 || 18-26 | | 大きさ(nm) || 70-90 || 約70 || 100-150 || 80-100 || 80-100 || 180(長)、75(径) || 150-250 || 18-26 | ||
|- | |- | ||
| エンベロープ || なし || colspan=" | | ホストゲノムへの組み込み || なし || なし || なし || あり || あり || なし || なし || あり(ベクターでは「なし」)* | ||
|- | |||
| エンベロープ || colspan="1" style="text-align:center;" |なし || colspan="6" style="text-align:center;" |あり || colspan="1" style="text-align:center;" |なし | |||
|} | |} | ||
* 野生型アデノ随伴ウイルスでは''Rep''依存的に宿主細胞の第19番染色体への組込みが起こるが、ベクターでは''Rep''遺伝子を欠損するため組込みはほぼ起こらない。 | |||
{| class="wikitable" | {| class="wikitable" | ||
|+ 表2.遺伝子導入に使用される代表的なウイルスベクターの性質 | |||
! 由来 !! アデノウイルス !! シンドビスウイルス !! センダイウイルス !! レトロウイルス !! レンチウイルス !! アデノ随伴ウイルス | ! 由来 !! アデノウイルス !! シンドビスウイルス !! センダイウイルス !! レトロウイルス !! レンチウイルス !! アデノ随伴ウイルス | ||
|- | |- | ||
47行目: | 51行目: | ||
| 物理的封じ込め || colspan="5" style="text-align:center;" | P2 || P1(普通の実験室) | | 物理的封じ込め || colspan="5" style="text-align:center;" | P2 || P1(普通の実験室) | ||
|- | |- | ||
| | | 搭載可能DNAサイズ* || 8~30 kb || 11.7kb || 4.5 kb || 8 kb || 8 kb || 4.7 kb | ||
|} | |} | ||
* パッケージングに必要な配列やプロモーター、ポリアデニレーションシグナル等を含む。 | |||
=== アデノウイルスベクター === | === アデノウイルスベクター === | ||
小児に感冒を引き起こす[[ヒト]][[アデノウイルス]] 5型が主に利用されている。ウイルス[[ゲノム]]([[DNA]])は核移行するがホストゲノムに組み込まれずに[[転写]]・[[翻訳]]される。アデノウイルスの増殖にはE1AとE1B領域が必須であるが、これらを発現させたい外来遺伝子と置換し、さらに増殖には不必要なE3領域も欠損させている<ref>'''斎藤 泉'''<br>次世代アデノウイルスベクターの開発状況と展望<br>ウイルス: 47:231-8: | 小児に感冒を引き起こす[[ヒト]][[アデノウイルス]] 5型が主に利用されている。ウイルス[[ゲノム]]([[DNA]])は核移行するがホストゲノムに組み込まれずに[[転写]]・[[翻訳]]される。アデノウイルスの増殖にはE1AとE1B領域が必須であるが、これらを発現させたい外来遺伝子と置換し、さらに増殖には不必要なE3領域も欠損させている<ref>'''斎藤 泉'''<br>次世代アデノウイルスベクターの開発状況と展望<br>ウイルス: 47:231-8:1997 doi 10.2222/jsv.47.231</ref>。パッケージングされる部分を残して全て外来遺伝子に置換したウイルスプラスミドを、E1AとE1Bを持続発現しているHEK293細胞に導入することでウイルス粒子が産生され、細胞外に放出される。産生されたウイルス粒子はE1A遺伝子機能をもたないので複製できず非増殖型である。 | ||
アデノウイルスベクターは[[ニューロン]]や静止期の[[アストロサイト]]を含むさまざまな細胞に感染し、きわめて効率的に外来遺伝子を発現する。細胞障害性や[[免疫原性]]をもつことが欠点であるが、逆にこの点を利用して脳腫瘍に対する遺伝子治療ベクターとして利用されている。遺伝子発現は一過性で感染から2ヶ月以内に消失する。 | アデノウイルスベクターは[[ニューロン]]や静止期の[[アストロサイト]]を含むさまざまな細胞に感染し、きわめて効率的に外来遺伝子を発現する。細胞障害性や[[免疫原性]]をもつことが欠点であるが、逆にこの点を利用して脳腫瘍に対する遺伝子治療ベクターとして利用されている。遺伝子発現は一過性で感染から2ヶ月以内に消失する。 | ||
68行目: | 74行目: | ||
感染によりウイルスゲノム(一本鎖RNA)が細胞内に入り、同時に送り込まれた逆転写酵素により二本鎖DNAへと変えられる('''図1'''参照)。二本鎖DNAは核に送られて[[染色体]]に組み込まれ、細胞の転写発現機構を使って外来遺伝子を発現する。ただし、核膜があると核内に入ることができないため、核膜が消失する分裂期の細胞でしか組み込みは行われない。すなわちレトロウイルスベクターは最終分裂を終えたニューロンへの遺伝子発現には使えないが、この性質を利用し、成熟動物の[[神経幹細胞]]選択的に遺伝子発現させる目的で使用されることがある。 | 感染によりウイルスゲノム(一本鎖RNA)が細胞内に入り、同時に送り込まれた逆転写酵素により二本鎖DNAへと変えられる('''図1'''参照)。二本鎖DNAは核に送られて[[染色体]]に組み込まれ、細胞の転写発現機構を使って外来遺伝子を発現する。ただし、核膜があると核内に入ることができないため、核膜が消失する分裂期の細胞でしか組み込みは行われない。すなわちレトロウイルスベクターは最終分裂を終えたニューロンへの遺伝子発現には使えないが、この性質を利用し、成熟動物の[[神経幹細胞]]選択的に遺伝子発現させる目的で使用されることがある。 | ||
先天性免疫不全症に対して、造血幹細胞を標的とする遺伝子治療が行われ有効性が確認されているが、82人中9人に白血病などの造血型副作用の発症が報告された。これは染色体に組み込まれたベクターによる近傍の癌遺伝子の活性化が原因と考えられている。 | |||
=== レンチウイルスベクター === | === レンチウイルスベクター === | ||
85行目: | 91行目: | ||
センダイウイルスベクターはニューロンを含む非分裂細胞にも外来遺伝子発現が可能で、発現能も高い。感染後、ウイルスゲノムはホストの染色体に組み込まれずRNAの状態で細胞質に留まるため、挿入変異や染色体の構造変化の恐れがなく、機能性、安全性の両面で優れたベクターである。生体にベクター投与後2〜4日目に外来遺伝子の発現量が最大となり、数週間発現が持続する。 | センダイウイルスベクターはニューロンを含む非分裂細胞にも外来遺伝子発現が可能で、発現能も高い。感染後、ウイルスゲノムはホストの染色体に組み込まれずRNAの状態で細胞質に留まるため、挿入変異や染色体の構造変化の恐れがなく、機能性、安全性の両面で優れたベクターである。生体にベクター投与後2〜4日目に外来遺伝子の発現量が最大となり、数週間発現が持続する。 | ||
ラットの[[神経膠芽腫]](グリオブラストーマ)に、インターロイキン2遺伝子搭載センダイウイルスベクター投与と不活化癌細胞を移植する実験で、顕著な腫瘍退縮効果と生存率の向上が報告されている<ref><pubmed>15897582 </pubmed></ref>。 | |||
=== アデノ随伴ウイルスベクター === | === アデノ随伴ウイルスベクター === | ||
アデノ随伴ウイルスは、ラテン語で「小さい」を意味する“parvus”を語源とするパルボウイルス科のウイルスで、粒子径は18 – 26nmとDNAウイルスの中ではもっとも小さい。単独感染では増殖能はなく、アデノウイルスと同時に感染して初めて増殖が可能となる。病原性はないと考えられている。ウイルスゲノムは4.7kbの線状一本鎖DNAで、両端に逆位反復配列(Inverted Terminal Repeat : ITR) | アデノ随伴ウイルスは、ラテン語で「小さい」を意味する“parvus”を語源とするパルボウイルス科のウイルスで、粒子径は18 – 26nmとDNAウイルスの中ではもっとも小さい。単独感染では増殖能はなく、アデノウイルスと同時に感染して初めて増殖が可能となる。病原性はないと考えられている。ウイルスゲノムは4.7kbの線状一本鎖DNAで、両端に逆位反復配列(Inverted Terminal Repeat : ITR)と呼ばれるT字型のヘアピン構造が存在し、ゲノム複製はこの部分の折り返しにより、他のプライマー非依存的に開始する。ゲノムには''Rep''と''Cap''という2つの遺伝子が存在する。''Rep''はウイルスゲノムの複製や転写を担う非構造タンパク質を、''Cap''は3種類の構造タンパク質(カプシドタンパク質)をコードしている。 | ||
アデノ随伴ウイルスには多くの血清型が知られており、主に細胞表面受容体の違いにより特定の組織や細胞種への指向性を示す。最もよく研究されている2型の受容体は[[へパラン硫酸プロテオグリカン]]であり<ref><pubmed>9445046</pubmed></ref>、[[線維芽細胞増殖因子受容体1]]([[FGFR1]])<ref><pubmed> 9883842 </pubmed></ref>や[[αVβ5インテグリン]]<ref><pubmed>9883843 </pubmed></ref>も共受容体として働き、ウイルスの結合と取り込みを促進することが示唆されている。アデノ随伴ウイルス4型と5型は[[シアル酸]]に結合すること<ref><pubmed>11435568</pubmed></ref>、また[[PDGF受容体]]が5型の受容体であることが報告されている<ref><pubmed>14502277 </pubmed></ref>。適切な血清型由来のベクターを用いることで、任意の臓器の特定細胞種を標的とした効率的な遺伝子発現が期待できる。 | アデノ随伴ウイルスには多くの血清型が知られており、主に細胞表面受容体の違いにより特定の組織や細胞種への指向性を示す。最もよく研究されている2型の受容体は[[へパラン硫酸プロテオグリカン]]であり<ref><pubmed>9445046</pubmed></ref>、[[線維芽細胞増殖因子受容体1]]([[FGFR1]])<ref><pubmed> 9883842 </pubmed></ref>や[[αVβ5インテグリン]]<ref><pubmed>9883843 </pubmed></ref>も共受容体として働き、ウイルスの結合と取り込みを促進することが示唆されている。アデノ随伴ウイルス4型と5型は[[シアル酸]]に結合すること<ref><pubmed>11435568</pubmed></ref>、また[[PDGF受容体]]が5型の受容体であることが報告されている<ref><pubmed>14502277 </pubmed></ref>。適切な血清型由来のベクターを用いることで、任意の臓器の特定細胞種を標的とした効率的な遺伝子発現が期待できる。 | ||
野生型アデノ随伴ウイルスは非病原性であることから、アデノ随伴ウイルスベクターを遺伝子治療に使う最大のメリットは安全性が高いことである。導入遺伝子のほとんどはエピソームとして存在し、神経細胞や筋細胞などの非分裂細胞では長期にわたって遺伝子発現が持続する。一方、増殖細胞の場合は導入遺伝子が早期に消失する。パーキンソン病、レーバー先天黒内障、血友病Bに対する遺伝子治療臨床研究が行われており、顕著な効果が認められていることから、今後様々な疾患への応用が期待されている。 | |||
==== アデノ随伴ウイルスベクター粒子の作製法 ==== | ==== アデノ随伴ウイルスベクター粒子の作製法 ==== | ||
96行目: | 104行目: | ||
ITR間の[[Rep]]、[[Cap]]の2つの遺伝子を取り除き、そのスペースにプロモーターと目的の遺伝子を挿入したベクタープラスミドを作製する('''図2''')。Rep、Cap(ウイルス複製やカプシド形成に必要なタンパク質)は別のプラスミドで供給する。またアデノウイルスのヘルパー作用としてE1A、E1B、E2A、VA、E4遺伝子が必要となるが、このうちE1AとE1BはHEK293細胞(E1AとE1Bでトランスフォームしている)から、残りのE2A、E4、VAはヘルパープラスミドとして供給する。これら3つのプラスミドでHEK293細胞をトランスフェクションすると、Rep、Cap遺伝子はもたずITR間の外来遺伝子のみをもつウイルス粒子が産生される。粒子は核内に存在するため細胞を凍結融解し、[[wj:塩化セシウム|塩化セシウム]]を用いた密度勾配超遠心法を用いて精製する。 | ITR間の[[Rep]]、[[Cap]]の2つの遺伝子を取り除き、そのスペースにプロモーターと目的の遺伝子を挿入したベクタープラスミドを作製する('''図2''')。Rep、Cap(ウイルス複製やカプシド形成に必要なタンパク質)は別のプラスミドで供給する。またアデノウイルスのヘルパー作用としてE1A、E1B、E2A、VA、E4遺伝子が必要となるが、このうちE1AとE1BはHEK293細胞(E1AとE1Bでトランスフォームしている)から、残りのE2A、E4、VAはヘルパープラスミドとして供給する。これら3つのプラスミドでHEK293細胞をトランスフェクションすると、Rep、Cap遺伝子はもたずITR間の外来遺伝子のみをもつウイルス粒子が産生される。粒子は核内に存在するため細胞を凍結融解し、[[wj:塩化セシウム|塩化セシウム]]を用いた密度勾配超遠心法を用いて精製する。 | ||
=== 単純ヘルペスウイルスベクター === | |||
単純ヘルペスウイルス(HSV)1型は宿主細胞に対する毒性が強く、病原性に関与するウイルス遺伝子の研究が進んでいることから、ウイルス療法(oncolytic virus therapy)として腫瘍の治療に用いられている。腫瘍治療用ウイルスは増殖型ウイルスであり腫瘍内で複製能を保持しているが、正常組織では病原性が最小限に抑えられるように遺伝子操作が加えられている。腫瘍細胞に感染したウイルスは細胞内で増殖し、感染細胞は死滅する。増殖したウイルスは周囲に散らばり、周囲の腫瘍細胞に感染、細胞死誘導を繰り返す。HSVは任意の遺伝子を搭載するベクターとして利用することも可能で、癌治療に効果のある外来遺伝子を発現させることで治療効果を増強することができる。 | |||
非増殖型HSVベクターも開発されている。70以上あるHSV遺伝子の発現はカスケード状に制御されていることが知られているが、最初に発現する5つのα遺伝子のうちα4とα27遺伝子産物がウイルス増殖に必須である<ref><pubmed>10774195 </pubmed></ref>。またウイルスゲノムが宿主細胞の核内に入るにはいくつかの最初期遺伝子の発現が不可欠である。α4、α22、α27遺伝子を欠損させたベクター(α4とα27遺伝子を発現する細胞でのみ増殖可能)や、核移行に必須な最初期遺伝子を欠損させた非増殖型HSVベクターが開発されている<ref name=Glorioso2009><pubmed>15487938 </pubmed></ref><ref><pubmed>10023438 </pubmed></ref>。HSVは皮膚感染後に知覚神経終末から侵入し、逆行性軸索輸送を経て後根神経節に運ばれ潜伏する。潜伏中のHSVはLAT(Latency associated transcript)と呼ばれる転写物を恒常的に発現する。この性質を利用し、LATプロモーター制御下で侵害受容性神経伝達を修飾する分子を発現する非増殖型HSVベクターを後根神経節に持続感染させ、慢性痛を軽減させる遺伝子治療研究がなされている<ref name=Glorioso2009/>。 | |||
==参考文献== | ==参考文献== | ||
<references/> | <references/> |