「Αシヌクレイン」の版間の差分

編集の要約なし
(ページの作成:「αシヌクレイン 英語名:α-Synuclein/Alpha-Synuclein ドイツ語:α-Synuklein/Alfa-Synuklein 長谷川 隆文 東北大学大学院医学系研究科 神経…」)
 
編集の要約なし
13行目: 13行目:


== 歴史的背景 ==
== 歴史的背景 ==
 シヌクレインは、北東太平洋に生息するゴマフシビレエイTorpedo californicaの発電器官由来のコリン作動性シナプス小胞に対するポリクローナル抗体を用い、λgt11発現ライブラリーから1988年にcDNAクローニングされた<ref name=Maroteaux1988><pubmed>3411354</pubmed></ref> 。免疫染色でシナプス小胞に加え核周囲にも発現を認めたことから“Synaptic & nuclear protein”としてシヌクレイン(Synuclein)と命名され、神経系、特にシナプス機能に関連する分子と推定された。神経変性疾患研究者の間でシヌクレインが最初に注目されたのは、Alzheimer病(AD)研究との関わりからであった。AD脳の老人斑から分離されたアミロイドβタンパク以外の成分(Non-amyloid β protein component, NAC)として報告された部分ペプチド配列が、上述のシビレエイおよびそのホモログであるラット脳由来のシヌクレインと相同性があり、140アミノ酸からなるヒトのシヌクレイン(αシヌクレイン)と判明した<ref name=Ueda1993><pubmed>8248242</pubmed></ref> 。また、1994年にウシ脳由来のphosphoneuroprotein-14と相同性を示すヒト脳由来の134アミノ酸からなるタンパク(βシヌクレイン)が存在することも判明し、ヒト脳シヌクレインファミリーの存在が提示された<ref name=Nakajo1993><pubmed>8223629</pubmed></ref><ref><pubmed>name=Jakes1994><pubmed>8194594</pubmed></ref> 。α、βの接頭辞については、陽イオン交換HPLCカラムにて140アミノ酸タンパクは134アミノ酸タンパクより先に溶出されたことに由来する。1998年にはα/βシヌクレインの塩基配列情報を下にしたデータベース解析から、先に乳癌特異的遺伝子産物として報告されていた127アミノ酸のBreast cancer-specific gene 1 (BCSG1)が3番目のシヌクレイン分子種(γシヌクレイン)であることが判明した<ref name=Ji1997><pubmed>9044857</pubmed></ref><ref><pubmed>name=Lavedan1998><pubmed>9737786</pubmed></ref> 。時を同じくして、αシヌクレイン遺伝子(SNCA)のミスセンス変異(A53T、A30P)が家族性パーキンソン病(PD)の原因遺伝子PARK1として初めて報告され<ref name=Polymeropoulos1997><pubmed>9197268</pubmed></ref><ref><pubmed>name=Kruger1998><pubmed>9462735</pubmed></ref> 、さらに孤発性PDやレビー小体型認知症(Dementia with Lewy bodies, DLB)の神経病理学的指標である神経細胞内封入体(Lewy小体)の主要構成成分がαシヌクレインであることが相次いで判明し<ref name=Spillantini1997><pubmed>9278044</pubmed></ref><ref><pubmed>name=Baba1998><pubmed>9546347</pubmed></ref> 、同分子はPD関連疾患の病態に中心的な役割を担うことが確立され今日に至っている<ref name=Goedert2017><pubmed>28282814</pubmed></ref> 。
 シヌクレインは、北東太平洋に生息するゴマフシビレエイTorpedo californicaの発電器官由来のコリン作動性シナプス小胞に対するポリクローナル抗体を用い、λgt11発現ライブラリーから1988年にcDNAクローニングされた<ref name=Maroteaux1988><pubmed>3411354</pubmed></ref> 。免疫染色でシナプス小胞に加え核周囲にも発現を認めたことから“Synaptic & nuclear protein”としてシヌクレイン(Synuclein)と命名され、神経系、特にシナプス機能に関連する分子と推定された。神経変性疾患研究者の間でシヌクレインが最初に注目されたのは、Alzheimer病(AD)研究との関わりからであった。AD脳の老人斑から分離されたアミロイドβタンパク以外の成分(Non-amyloid β protein component, NAC)として報告された部分ペプチド配列が、上述のシビレエイおよびそのホモログであるラット脳由来のシヌクレインと相同性があり、140アミノ酸からなるヒトのシヌクレイン(αシヌクレイン)と判明した<ref name=Ueda1993><pubmed>8248242</pubmed></ref> 。また、1994年にウシ脳由来のphosphoneuroprotein-14と相同性を示すヒト脳由来の134アミノ酸からなるタンパク(βシヌクレイン)が存在することも判明し、ヒト脳シヌクレインファミリーの存在が提示された<ref name=Nakajo1993><pubmed>8223629</pubmed></ref><ref name=Jakes1994><pubmed>8194594</pubmed></ref> 。α、βの接頭辞については、陽イオン交換HPLCカラムにて140アミノ酸タンパクは134アミノ酸タンパクより先に溶出されたことに由来する。1998年にはα/βシヌクレインの塩基配列情報を下にしたデータベース解析から、先に乳癌特異的遺伝子産物として報告されていた127アミノ酸のBreast cancer-specific gene 1 (BCSG1)が3番目のシヌクレイン分子種(γシヌクレイン)であることが判明した<ref name=Ji1997><pubmed>9044857</pubmed></ref><ref name=Lavedan1998><pubmed>9737786</pubmed></ref> 。時を同じくして、αシヌクレイン遺伝子(SNCA)のミスセンス変異(A53T、A30P)が家族性パーキンソン病(PD)の原因遺伝子PARK1として初めて報告され<ref name=Polymeropoulos1997><pubmed>9197268</pubmed></ref><ref name=Kruger1998><pubmed>9462735</pubmed></ref> 、さらに孤発性PDやレビー小体型認知症(Dementia with Lewy bodies, DLB)の神経病理学的指標である神経細胞内封入体(Lewy小体)の主要構成成分がαシヌクレインであることが相次いで判明し<ref name=Spillantini1997><pubmed>9278044</pubmed></ref><ref name=Baba1998><pubmed>9546347</pubmed></ref> 、同分子はPD関連疾患の病態に中心的な役割を担うことが確立され今日に至っている<ref name=Goedert2017><pubmed>28282814</pubmed></ref> 。


== 構造 ==
== 構造 ==


=== ドメイン構造 ===
=== ドメイン構造 ===
ほ乳動物の3種類のシヌクレインパラログは何れもアミノ末端側に高い相同性を示し、それぞれKT(A)KE(Q)G(Q)Vの不完全なアミノ酸繰り返し配列を有している<ref name=Goedert2001><pubmed>11433374</pubmed></ref><ref><pubmed>name=Dev2003><pubmed>12814657</pubmed></ref> 。構造上、ヒトαシヌクレインは3つのドメイン、すなわち両親和性を有し生体膜リン脂質との結合性を示すアミノ末端領域(1-60アミノ酸)、中央部の疎水性に富み線維化に関与する領域(61-95アミノ酸、前述のNACに相当)、およびプロリンに富み陰性荷電し各種リガンドや金属イオンと結合性を示すカルボキシル末端領域(96-140アミノ酸)から構成される<ref name=Wang2016><pubmed>27378848</pubmed></ref> (図1A)。
ほ乳動物の3種類のシヌクレインパラログは何れもアミノ末端側に高い相同性を示し、それぞれKT(A)KE(Q)G(Q)Vの不完全なアミノ酸繰り返し配列を有している<ref name=Goedert2001><pubmed>11433374</pubmed></ref><ref name=Dev2003><pubmed>12814657</pubmed></ref> 。構造上、ヒトαシヌクレインは3つのドメイン、すなわち両親和性を有し生体膜リン脂質との結合性を示すアミノ末端領域(1-60アミノ酸)、中央部の疎水性に富み線維化に関与する領域(61-95アミノ酸、前述のNACに相当)、およびプロリンに富み陰性荷電し各種リガンドや金属イオンと結合性を示すカルボキシル末端領域(96-140アミノ酸)から構成される<ref name=Wang2016><pubmed>27378848</pubmed></ref> (図1A)。


=== 翻訳後修飾 ===
=== 翻訳後修飾 ===
αシヌクレインの翻訳後修飾として、リン酸化、ユビキチン化、SUMO (Small ubiquitin-like modifier)化、ニトロ化、O-GlcNAcylation化、アセチル化などがあり<ref name=Zhang2019><pubmed>31057362</pubmed></ref> 。これらの修飾はαシヌクレインの凝集性を変化させたり、生体膜への結合性に影響を与える。正常脳においてαシヌクレインの殆どはリン酸化を受けないが、PD患者のLewy小体に含まれる異常凝集したαシヌクレインは90%以上が129番目のSerがリン酸化されており、病的意義があると推定されている<ref name=Saito2003><pubmed>12834109</pubmed></ref><ref><pubmed>name=Okochi2000><pubmed>10617630</pubmed></ref><ref><pubmed>name=Fujiwara2002><pubmed>11813001</pubmed></ref> 。S129リン酸化を触媒するキナーゼとしては、Casein kinase II (CKII)、G protein-coupled receptor kinases (GRKs)、polo-like kinases (PLKs) などが知られている<ref name=Arawaka2006><pubmed>16957079</pubmed></ref><ref><pubmed>name=Inglis2009><pubmed>19004816</pubmed></ref><ref><pubmed>name=Ishii2007><pubmed>17868672</pubmed></ref> 。Lewy小体中には完全長のαシヌクレインに加え複数のtruncated formが確認される。C末端でのαシヌクレイン切断に関与する酵素として20S proteasome、calpain I、asparagine endopeptidase (AEP)、Caspase I、Neurosin、Plasmin、Cathepsin B/D/L、およびMatrix metalloproteinase 1/3 (MMP1/3) などが報告されている<ref name=Sung2005><pubmed>15863497</pubmed></ref><ref><pubmed>name=Sevlever2008><pubmed>18702517</pubmed></ref><ref><pubmed>name=Zhang2017><pubmed>28671665</pubmed></ref><ref><pubmed>name=Dufty2007><pubmed>17456777</pubmed></ref><ref><pubmed>name=Wang2016><pubmed>27482083</pubmed></ref><ref><pubmed>name=Kasai2008><pubmed>18358605</pubmed></ref><ref><pubmed>name=Sorrentino2020><pubmed>32424039</pubmed></ref> 。
αシヌクレインの翻訳後修飾として、リン酸化、ユビキチン化、SUMO (Small ubiquitin-like modifier)化、ニトロ化、O-GlcNAcylation化、アセチル化などがあり<ref name=Zhang2019><pubmed>31057362</pubmed></ref> 。これらの修飾はαシヌクレインの凝集性を変化させたり、生体膜への結合性に影響を与える。正常脳においてαシヌクレインの殆どはリン酸化を受けないが、PD患者のLewy小体に含まれる異常凝集したαシヌクレインは90%以上が129番目のSerがリン酸化されており、病的意義があると推定されている<ref name=Saito2003><pubmed>12834109</pubmed></ref><ref name=Okochi2000><pubmed>10617630</pubmed></ref><ref name=Fujiwara2002><pubmed>11813001</pubmed></ref> 。S129リン酸化を触媒するキナーゼとしては、Casein kinase II (CKII)、G protein-coupled receptor kinases (GRKs)、polo-like kinases (PLKs) などが知られている<ref name=Arawaka2006><pubmed>16957079</pubmed></ref><ref name=Inglis2009><pubmed>19004816</pubmed></ref><ref name=Ishii2007><pubmed>17868672</pubmed></ref> 。Lewy小体中には完全長のαシヌクレインに加え複数のtruncated formが確認される。C末端でのαシヌクレイン切断に関与する酵素として20S proteasome、calpain I、asparagine endopeptidase (AEP)、Caspase I、Neurosin、Plasmin、Cathepsin B/D/L、およびMatrix metalloproteinase 1/3 (MMP1/3) などが報告されている<ref name=Sung2005><pubmed>15863497</pubmed></ref><ref name=Sevlever2008><pubmed>18702517</pubmed></ref><ref name=Zhang2017><pubmed>28671665</pubmed></ref><ref name=Dufty2007><pubmed>17456777</pubmed></ref><ref name=Wang2016><pubmed>27482083</pubmed></ref><ref name=Kasai2008><pubmed>18358605</pubmed></ref><ref name=Sorrentino2020><pubmed>32424039</pubmed></ref> 。


=== コンフォメーション変化 ===
=== コンフォメーション変化 ===
Nativeな状態におけるαシヌクレインは、特定の2次構造をとらない可溶性のモノマーとして存在するか、あるいは一部にαヘリックス構造をもって生体膜に結合して存在すると推定されている<ref name=Weinreb1996><pubmed>8901511</pubmed></ref><ref><pubmed>name=Pirc2015><pubmed>26119565</pubmed></ref> 。一方、2011年に米国のSelkoeらがヒト生体内におけるαシヌクレインが4量体として存在する可能性を報告し、激しい議論が巻き起こった<ref name=Bartels2011><pubmed>21841800</pubmed></ref> 。ヒト赤血球から抽出したαシヌクレインについては、X線小角散乱法による解析から従来説通り特定の構造をもたないモノマーとして存在する可能性が示されている<ref name=Araki2016><pubmed>27469540</pubmed></ref> 。αシヌクレインは点変異やC末配列の欠損、酸化的ストレスあるいはオートファジー・リソソーム系やユビキチン・プロテアソームといったタンパク品質管理機構の破綻などによる病的代謝下では凝集性を増し、オリゴマーとよばれる中間体を経てβ-pleated sheetsからなるアミロイド様線維を形成する<ref name=Wang2016><pubmed>27378848</pubmed></ref><ref><pubmed>name=Hasegawa2006><pubmed>16567160</pubmed></ref><ref><pubmed>name=Oshima2016><pubmed>27112194</pubmed></ref><ref><pubmed>name=Ma2018><pubmed>30290273</pubmed></ref><ref><pubmed>name=Li2001><pubmed>11560511</pubmed></ref><ref><pubmed>name=McNaught2002><pubmed>12064477</pubmed></ref><ref><pubmed>name=Matsuzaki2004><pubmed>15033422</pubmed></ref> (図1B)。線維化の過程においては、前述のNACコア領域の12アミノ酸配列(71-82aa)が特に重要であると推定されている<ref name=Bédard2014><pubmed>25255476</pubmed></ref> 。なお、ヒトと95%の相同性をもつマウスαシヌクレインの53番目アミノ酸はヒト家族性PDのA53T変異と同じ配列となっており、より高い凝集性を示すことが判っている<ref name=Rochet2000><pubmed>10978144</pubmed></ref> 。
Nativeな状態におけるαシヌクレインは、特定の2次構造をとらない可溶性のモノマーとして存在するか、あるいは一部にαヘリックス構造をもって生体膜に結合して存在すると推定されている<ref name=Weinreb1996><pubmed>8901511</pubmed></ref><ref name=Pirc2015><pubmed>26119565</pubmed></ref> 。一方、2011年に米国のSelkoeらがヒト生体内におけるαシヌクレインが4量体として存在する可能性を報告し、激しい議論が巻き起こった<ref name=Bartels2011><pubmed>21841800</pubmed></ref> 。ヒト赤血球から抽出したαシヌクレインについては、X線小角散乱法による解析から従来説通り特定の構造をもたないモノマーとして存在する可能性が示されている<ref name=Araki2016><pubmed>27469540</pubmed></ref> 。αシヌクレインは点変異やC末配列の欠損、酸化的ストレスあるいはオートファジー・リソソーム系やユビキチン・プロテアソームといったタンパク品質管理機構の破綻などによる病的代謝下では凝集性を増し、オリゴマーとよばれる中間体を経てβ-pleated sheetsからなるアミロイド様線維を形成する<ref name=Wang2016><pubmed>27378848</pubmed></ref><ref name=Hasegawa2006><pubmed>16567160</pubmed></ref><ref name=Oshima2016><pubmed>27112194</pubmed></ref><ref name=Ma2018><pubmed>30290273</pubmed></ref><ref name=Li2001><pubmed>11560511</pubmed></ref><ref name=McNaught2002><pubmed>12064477</pubmed></ref><ref name=Matsuzaki2004><pubmed>15033422</pubmed></ref> (図1B)。線維化の過程においては、前述のNACコア領域の12アミノ酸配列(71-82aa)が特に重要であると推定されている<ref name=Bédard2014><pubmed>25255476</pubmed></ref> 。なお、ヒトと95%の相同性をもつマウスαシヌクレインの53番目アミノ酸はヒト家族性PDのA53T変異と同じ配列となっており、より高い凝集性を示すことが判っている<ref name=Rochet2000><pubmed>10978144</pubmed></ref> 。


==サブファミリー ==
==サブファミリー ==


系統発生上、3つのシヌクレインパラログ(α、β、γ)のうちγシヌクレインが最も古い分子種であると考えられている<ref name=Siddiqui2016><pubmed>27080380</pubmed></ref> (図2)。うち最大の分子量をもつのがαシヌクレインで、脊椎動物以上に存在しその一次構造は種を超えて保存されている。アミノ酸レベルでのヒトαシヌクレインに対する相同性はβシヌクレインが78%、γシヌクレインが60%で、アミノ末端が良く保存されているのに対しカルボキシル末端は相同性が低くなっている<ref name=Frey2020><pubmed>32772367</pubmed></ref> (図3)。また、NAC領域を欠くβシヌクレインは凝集性が低いことが知られている<ref name=Uversky2002><pubmed>11812782</pubmed></ref> 。ヒト染色体におけるこれら3つのシヌクレイン遺伝子(SNCA、SNCB、SNCG)の遺伝子座はそれぞれ4q21.3-q22、5q35、10q23に位置している<ref name=Lavedan1998><pubmed>9737786</pubmed></ref><ref><pubmed>name=Spillantini1995><pubmed>7558013</pubmed></ref><ref><pubmed>name=Chen1995><pubmed>7601479</pubmed></ref> 。SNCA遺伝子は6つのexonを有し、140アミノ酸からなるmain transcriptのほか、選択的スプライシングによりexon 3、exon 5およびその両者が欠けた少なくとも3種のアイソフォームを生じる<ref name=Gámez-Valero2018><pubmed>29370097</pubmed></ref> (図4)。
系統発生上、3つのシヌクレインパラログ(α、β、γ)のうちγシヌクレインが最も古い分子種であると考えられている<ref name=Siddiqui2016><pubmed>27080380</pubmed></ref> (図2)。うち最大の分子量をもつのがαシヌクレインで、脊椎動物以上に存在しその一次構造は種を超えて保存されている。アミノ酸レベルでのヒトαシヌクレインに対する相同性はβシヌクレインが78%、γシヌクレインが60%で、アミノ末端が良く保存されているのに対しカルボキシル末端は相同性が低くなっている<ref name=Frey2020><pubmed>32772367</pubmed></ref> (図3)。また、NAC領域を欠くβシヌクレインは凝集性が低いことが知られている<ref name=Uversky2002><pubmed>11812782</pubmed></ref> 。ヒト染色体におけるこれら3つのシヌクレイン遺伝子(SNCA、SNCB、SNCG)の遺伝子座はそれぞれ4q21.3-q22、5q35、10q23に位置している<ref name=Lavedan1998><pubmed>9737786</pubmed></ref><ref name=Spillantini1995><pubmed>7558013</pubmed></ref><ref name=Chen1995><pubmed>7601479</pubmed></ref> 。SNCA遺伝子は6つのexonを有し、140アミノ酸からなるmain transcriptのほか、選択的スプライシングによりexon 3、exon 5およびその両者が欠けた少なくとも3種のアイソフォームを生じる<ref name=Gámez-Valero2018><pubmed>29370097</pubmed></ref> (図4)。


== 発現分布 ==
== 発現分布 ==
36行目: 36行目:


=== 細胞内分布 ===
=== 細胞内分布 ===
細胞内においてαシヌクレインの大半は細胞質中に存在し、一部はシナプス小胞などの生体膜と結合して存在している<ref name=Maroteaux1988><pubmed>3411354</pubmed></ref><ref><pubmed>name=Pirc2015><pubmed>26119565</pubmed></ref> 。このほか、ミトコンドリア内膜、小胞体とミトコンドリアの接触領域(Mitochondria-associated membrane, MAM)、ゴルジ体、エンドソームなどにも存在が確認されている<ref name=Tompkins2003><pubmed>12932858</pubmed></ref><ref><pubmed>name=Li2007><pubmed>17885598</pubmed></ref><ref><pubmed>name=Guardia-Laguarta2014><pubmed>24381286</pubmed></ref><ref><pubmed>name=Hasegawa2011><pubmed></pubmed></ref> 。名前の由来となった核におけるαシヌクレインの存在はほ乳動物においては微量と考えられているが、ヒストンあるいはDNA結合タンパクとして機能し、種々の遺伝子発現制御に関与する可能性が指摘されている<ref name=Sugeno2016><pubmed>27808254</pubmed></ref><ref><pubmed>name=Goers2003><pubmed>12859192</pubmed></ref><ref><pubmed>name=Jiang2018><pubmed>30102440</pubmed></ref> 。この様にαシヌクレインは主に細胞内で機能するタンパクと考えられているが、一方で脳脊髄液や血清、尿などの体液中や培養神経細胞の培地上清にも微量ながら検出され<ref name=Hasegawa2011><pubmed></pubmed></ref><ref><pubmed>name=Tokuda2006><pubmed>16930553</pubmed></ref><ref><pubmed>name=El-Agnaf2006><pubmed>16507759</pubmed></ref><ref><pubmed>name=Eller2009><pubmed>19724250</pubmed></ref> 、一部は細胞外に分泌されると推定されている<ref name=Hasegawa2017><pubmed>28539529</pubmed></ref> 。細胞外αシヌクレインは、後述するLewy病理のプリオン様伝播との関連で注目されている。
細胞内においてαシヌクレインの大半は細胞質中に存在し、一部はシナプス小胞などの生体膜と結合して存在している<ref name=Maroteaux1988><pubmed>3411354</pubmed></ref><ref name=Pirc2015><pubmed>26119565</pubmed></ref> 。このほか、ミトコンドリア内膜、小胞体とミトコンドリアの接触領域(Mitochondria-associated membrane, MAM)、ゴルジ体、エンドソームなどにも存在が確認されている<ref name=Tompkins2003><pubmed>12932858</pubmed></ref><ref name=Li2007><pubmed>17885598</pubmed></ref><ref name=Guardia-Laguarta2014><pubmed>24381286</pubmed></ref><ref name=Hasegawa2011><pubmed></pubmed></ref> 。名前の由来となった核におけるαシヌクレインの存在はほ乳動物においては微量と考えられているが、ヒストンあるいはDNA結合タンパクとして機能し、種々の遺伝子発現制御に関与する可能性が指摘されている<ref name=Sugeno2016><pubmed>27808254</pubmed></ref><ref name=Goers2003><pubmed>12859192</pubmed></ref><ref name=Jiang2018><pubmed>30102440</pubmed></ref> 。この様にαシヌクレインは主に細胞内で機能するタンパクと考えられているが、一方で脳脊髄液や血清、尿などの体液中や培養神経細胞の培地上清にも微量ながら検出され<ref name=Hasegawa2011><pubmed></pubmed></ref><ref name=Tokuda2006><pubmed>16930553</pubmed></ref><ref name=El-Agnaf2006><pubmed>16507759</pubmed></ref><ref name=Eller2009><pubmed>19724250</pubmed></ref> 、一部は細胞外に分泌されると推定されている<ref name=Hasegawa2017><pubmed>28539529</pubmed></ref> 。細胞外αシヌクレインは、後述するLewy病理のプリオン様伝播との関連で注目されている。


== 機能 ==
== 機能 ==


αシヌクレインはシナプス前末端に多く局在することや、キンカチョウ(錦花鳥、Taeniopygia guttata)がさえずりを学習する時期に神経系で発現が上昇することから、当初からシナプス機能や神経可塑性に関与すると推察されてきた<ref name=Maroteaux1988><pubmed>3411354</pubmed></ref><ref><pubmed>name=George1995><pubmed>7646890</pubmed></ref><ref><pubmed>name=Quilty2003><pubmed>12821390</pubmed></ref> 。一方、その生理的機能については未だ十分には解明されていない。意外にもαシヌクレインのノックアウトマウスは目立った表現型を示さず神経変性も生じない<ref name=Abeliovich2000><pubmed>10707987</pubmed></ref> 。一方、同マウスは線条体ドパミン放出量の増加を示し、アンフェタミンに対するドパミン依存性の運動反応が減弱していた。また、α、β、γ全てのシヌクレインを欠失したマウスは寿命がやや短縮しシナプスサイズや密度が縮小していた<ref name=Greten-Harrison2010><pubmed>20974939</pubmed></ref> 。シヌクレインのトリプルノックアウトマウスは若年ではシナプス伝達の促進を示したが、加齢に伴いその機能は低下していた。複数の研究から、αシヌクレインはシナプス小胞のリサイクリングや癒合に重要なSNARE(soluble N-ethylmaleimide-sensitive fusion attachment protein receptor)蛋白質の会合に関与することが示されている<ref name=Hasegawa2017><pubmed>28539529</pubmed></ref><ref><pubmed>name=Huang2019><pubmed>30745863</pubmed></ref> 。一例としてαシヌクレインはSNAREシャペロンの一種であるcysteine string protein(CSPα)欠失を補助する能力を有し、同分子がCSPαと同様にシャペロンとして機能することが示唆されている<ref name=Gundersen2020><pubmed>32044380</pubmed></ref><ref><pubmed>name=Hasegawa</pubmed></ref> 。なお、αシヌクレインは赤血球にも多く含まれるが、赤芽球の成熟時にその発現が増加し脱核直前に減少することから、赤芽球系細胞の分化成熟に関与すると推定されている<ref name=Araki2016><pubmed>27469540</pubmed></ref> 。
αシヌクレインはシナプス前末端に多く局在することや、キンカチョウ(錦花鳥、Taeniopygia guttata)がさえずりを学習する時期に神経系で発現が上昇することから、当初からシナプス機能や神経可塑性に関与すると推察されてきた<ref name=Maroteaux1988><pubmed>3411354</pubmed></ref><ref name=George1995><pubmed>7646890</pubmed></ref><ref name=Quilty2003><pubmed>12821390</pubmed></ref> 。一方、その生理的機能については未だ十分には解明されていない。意外にもαシヌクレインのノックアウトマウスは目立った表現型を示さず神経変性も生じない<ref name=Abeliovich2000><pubmed>10707987</pubmed></ref> 。一方、同マウスは線条体ドパミン放出量の増加を示し、アンフェタミンに対するドパミン依存性の運動反応が減弱していた。また、α、β、γ全てのシヌクレインを欠失したマウスは寿命がやや短縮しシナプスサイズや密度が縮小していた<ref name=Greten-Harrison2010><pubmed>20974939</pubmed></ref> 。シヌクレインのトリプルノックアウトマウスは若年ではシナプス伝達の促進を示したが、加齢に伴いその機能は低下していた。複数の研究から、αシヌクレインはシナプス小胞のリサイクリングや癒合に重要なSNARE(soluble N-ethylmaleimide-sensitive fusion attachment protein receptor)蛋白質の会合に関与することが示されている<ref name=Hasegawa2017><pubmed>28539529</pubmed></ref><ref name=Huang2019><pubmed>30745863</pubmed></ref> 。一例としてαシヌクレインはSNAREシャペロンの一種であるcysteine string protein(CSPα)欠失を補助する能力を有し、同分子がCSPαと同様にシャペロンとして機能することが示唆されている<ref name=Gundersen2020><pubmed>32044380</pubmed></ref><ref name=Hasegawa</pubmed></ref> 。なお、αシヌクレインは赤血球にも多く含まれるが、赤芽球の成熟時にその発現が増加し脱核直前に減少することから、赤芽球系細胞の分化成熟に関与すると推定されている<ref name=Araki2016><pubmed>27469540</pubmed></ref> 。


== 疾患との関わり ==
== 疾患との関わり ==


=== 家族性パーキンソン病の原因遺伝子として ===
=== 家族性パーキンソン病の原因遺伝子として ===
1997年イタリア起源の優性遺伝形式をとる家族性PDの家系で最初のαシヌクレイン遺伝子の点変異(A53T)家系が報告され<ref name=Polymeropoulos1997><pubmed>9197268</pubmed></ref> 、次いでドイツから異なる変異(A30P)を有する第二の家系が見つかりPARK1と命名された<ref name=Kruger1998><pubmed>9462735</pubmed></ref> 。前者は比較的若年発症、後者は中年発症という差があるものの、両者ともレボドパ反応性のパーキンソニズムを呈し神経病理学的にも孤発性PD類似の所見を認めたため、αシヌクレインは孤発性PDの病態解明に結びつくkey moleculeとして衆目を集めることとなった。これまでに家族性PDを来すSNCAミスセンス変異として、E46K、H50Q、G51D、A53Eを加えた6種類が報告されている<ref name=Zarranz2004><pubmed>14755719</pubmed></ref><ref><pubmed>name=Kiely2013><pubmed>23404372</pubmed></ref><ref><pubmed>name=Appel-Cresswell2013><pubmed>23457019</pubmed></ref><ref><pubmed>name=Pasanen2014><pubmed>24746362</pubmed></ref> 。さらに、これらの点変異に加えαシヌクレイン遺伝子の重複でも家族性PDが発症することが明らかになっている。この家系は、第4染色体長腕にマッピングされるもののPARK1変異が証明されないため当初別の遺伝子座(PARK4)として分類されていたが、後にαシヌクレイン遺伝子が三重重複していることが判明した<ref name=Singleton2003><pubmed>14593171</pubmed></ref> 。臨床的には認知症を呈し、病理学的にもLewy小体が黒質や青斑よりもマイネルト基底核や海馬、側頭葉に目立つ特徴があった。その後さらに二重重複家系も報告されたが、こちらは認知機能は保たれ中年発症のパーキンソニズムを示していた<ref name=Chartier-Harlin2004><pubmed>15451224</pubmed></ref> 。これらの家系は正常型αシヌクレインの遺伝子量がそのままPDからDLBまでの臨床像を連続的に説明し得ることを示唆しており興味深い。
1997年イタリア起源の優性遺伝形式をとる家族性PDの家系で最初のαシヌクレイン遺伝子の点変異(A53T)家系が報告され<ref name=Polymeropoulos1997><pubmed>9197268</pubmed></ref> 、次いでドイツから異なる変異(A30P)を有する第二の家系が見つかりPARK1と命名された<ref name=Kruger1998><pubmed>9462735</pubmed></ref> 。前者は比較的若年発症、後者は中年発症という差があるものの、両者ともレボドパ反応性のパーキンソニズムを呈し神経病理学的にも孤発性PD類似の所見を認めたため、αシヌクレインは孤発性PDの病態解明に結びつくkey moleculeとして衆目を集めることとなった。これまでに家族性PDを来すSNCAミスセンス変異として、E46K、H50Q、G51D、A53Eを加えた6種類が報告されている<ref name=Zarranz2004><pubmed>14755719</pubmed></ref><ref name=Kiely2013><pubmed>23404372</pubmed></ref><ref name=Appel-Cresswell2013><pubmed>23457019</pubmed></ref><ref name=Pasanen2014><pubmed>24746362</pubmed></ref> 。さらに、これらの点変異に加えαシヌクレイン遺伝子の重複でも家族性PDが発症することが明らかになっている。この家系は、第4染色体長腕にマッピングされるもののPARK1変異が証明されないため当初別の遺伝子座(PARK4)として分類されていたが、後にαシヌクレイン遺伝子が三重重複していることが判明した<ref name=Singleton2003><pubmed>14593171</pubmed></ref> 。臨床的には認知症を呈し、病理学的にもLewy小体が黒質や青斑よりもマイネルト基底核や海馬、側頭葉に目立つ特徴があった。その後さらに二重重複家系も報告されたが、こちらは認知機能は保たれ中年発症のパーキンソニズムを示していた<ref name=Chartier-Harlin2004><pubmed>15451224</pubmed></ref> 。これらの家系は正常型αシヌクレインの遺伝子量がそのままPDからDLBまでの臨床像を連続的に説明し得ることを示唆しており興味深い。


=== Lewy小体・グリア細胞内封入体の構成成分として ===
=== Lewy小体・グリア細胞内封入体の構成成分として ===
PD患者の中脳黒質や青斑核などにはヘマトキシン・エオジン染色でエオジン好性のコアを明瞭なハロが取り囲む直径5-20 μm程度の類円形の封入体が認められ、発見者であるFriedrich Heinrich Lewyの名にちなみLewy小体とよばれる<ref name=Wakabayashi2007><pubmed>18018486</pubmed></ref> (図5A)。1997年Spillantiniらは家族性PDの原因としてαシヌクレイン遺伝子が報告されたことをヒントに孤発性PDおよびDLB患者脳を用いた免疫染色を実施し、Lewy小体がαシヌクレイン抗体で強く染色されることを世界に先駆けて報告した<ref name=Spillantini1997><pubmed>9278044</pubmed></ref> 。その翌年、IwatsuboらはDLB剖検脳から単離・精製したLewy小体を抗原として複数の抗体を作製し、うち幾つかがαシヌクレインを認識することを証明し、αシヌクレインがLewy小体の主要構成成分であるとの直接証拠を提示した<ref name=Baba1998><pubmed>9546347</pubmed></ref> 。さらに、多系統萎縮症(multiple system atrophy, MSA)患者のオリゴデンドログリア内に多発するグリア細胞内封入体がやはりαシヌクレイン陽性であることが確認され(図5B)<ref name=Hasegawa2013><pubmed></pubmed></ref><ref><pubmed>name=Wakabayashi1998><pubmed>9682846</pubmed></ref> 、αシヌクレインが病態機序の中心的役割を担うと想定される神経疾患群を総称するumbrella termとして “シヌクレイノパチー”が提唱されることとなった<ref name=Goedert2001><pubmed>11433374</pubmed></ref> (図6)。
PD患者の中脳黒質や青斑核などにはヘマトキシン・エオジン染色でエオジン好性のコアを明瞭なハロが取り囲む直径5-20 μm程度の類円形の封入体が認められ、発見者であるFriedrich Heinrich Lewyの名にちなみLewy小体とよばれる<ref name=Wakabayashi2007><pubmed>18018486</pubmed></ref> (図5A)。1997年Spillantiniらは家族性PDの原因としてαシヌクレイン遺伝子が報告されたことをヒントに孤発性PDおよびDLB患者脳を用いた免疫染色を実施し、Lewy小体がαシヌクレイン抗体で強く染色されることを世界に先駆けて報告した<ref name=Spillantini1997><pubmed>9278044</pubmed></ref> 。その翌年、IwatsuboらはDLB剖検脳から単離・精製したLewy小体を抗原として複数の抗体を作製し、うち幾つかがαシヌクレインを認識することを証明し、αシヌクレインがLewy小体の主要構成成分であるとの直接証拠を提示した<ref name=Baba1998><pubmed>9546347</pubmed></ref> 。さらに、多系統萎縮症(multiple system atrophy, MSA)患者のオリゴデンドログリア内に多発するグリア細胞内封入体がやはりαシヌクレイン陽性であることが確認され(図5B)<ref name=Hasegawa2013><pubmed></pubmed></ref><ref name=Wakabayashi1998><pubmed>9682846</pubmed></ref> 、αシヌクレインが病態機序の中心的役割を担うと想定される神経疾患群を総称するumbrella termとして “シヌクレイノパチー”が提唱されることとなった<ref name=Goedert2001><pubmed>11433374</pubmed></ref> (図6)。


=== αシヌクレインと神経変性 ===
=== αシヌクレインと神経変性 ===
54行目: 54行目:


==== 酸化的ストレス ====
==== 酸化的ストレス ====
活性酸素は細胞内タンパクやオルガネラを傷害することにより細胞死を誘導する。αシヌクレインオリゴマーは金属イオンと結合することで活性酸素種を発生させる<ref name=Deas2016><pubmed>26564470</pubmed></ref> 。あるいは、リソソームやミトコンドリア障害などを誘導し酸化的ストレスを惹起する一因となる<ref name=Luth2014><pubmed>24942732</pubmed></ref><ref><pubmed>name=Freeman2013><pubmed>23634225</pubmed></ref> 。また、ドパミン酸化物のキノン体はαシヌクレインオリゴマーを安定化させる作用をもつことが示されている<ref name=Conway2001><pubmed>11701929</pubmed></ref> 。
活性酸素は細胞内タンパクやオルガネラを傷害することにより細胞死を誘導する。αシヌクレインオリゴマーは金属イオンと結合することで活性酸素種を発生させる<ref name=Deas2016><pubmed>26564470</pubmed></ref> 。あるいは、リソソームやミトコンドリア障害などを誘導し酸化的ストレスを惹起する一因となる<ref name=Luth2014><pubmed>24942732</pubmed></ref><ref name=Freeman2013><pubmed>23634225</pubmed></ref> 。また、ドパミン酸化物のキノン体はαシヌクレインオリゴマーを安定化させる作用をもつことが示されている<ref name=Conway2001><pubmed>11701929</pubmed></ref> 。


==== 小胞体ストレス ====
==== 小胞体ストレス ====
種々のストレスにより正常な構造をとれず折りたたみ異常(ミスフォールディング)を来したタンパクが小胞体に蓄積すると、小胞体ストレスとよばれるシグナルが誘導され細胞死が誘導される。小胞体ストレスの発現には前述の酸化的ストレスも寄与する。培養細胞を用いた実験結果から、変異型あるいはS129リン酸化αシヌクレインは小胞体ストレスを誘導し、細胞死をもたらすことが示されている<ref name=Smith2005><pubmed>16239241</pubmed></ref><ref><pubmed>name=Sugeno2008><pubmed>18562315</pubmed></ref> 。
種々のストレスにより正常な構造をとれず折りたたみ異常(ミスフォールディング)を来したタンパクが小胞体に蓄積すると、小胞体ストレスとよばれるシグナルが誘導され細胞死が誘導される。小胞体ストレスの発現には前述の酸化的ストレスも寄与する。培養細胞を用いた実験結果から、変異型あるいはS129リン酸化αシヌクレインは小胞体ストレスを誘導し、細胞死をもたらすことが示されている<ref name=Smith2005><pubmed>16239241</pubmed></ref><ref name=Sugeno2008><pubmed>18562315</pubmed></ref> 。


==== ミトコンドリア障害 ====
==== ミトコンドリア障害 ====
63行目: 63行目:


==== 細胞・オルガネラ膜破綻 ====
==== 細胞・オルガネラ膜破綻 ====
シヌクレイン凝集過程で生じるプロトフィブリルは、生体膜上に環状のポア構造を形成することで膜透過性を亢進させ、細胞傷害性をもたらす可能性が推定されている<ref name=Furukawa2006><pubmed>16606366</pubmed></ref><ref><pubmed>name=Ding2002><pubmed>12162735</pubmed></ref> 。実際、凝集したαシヌクレインはリソソーム膜を破壊することでその内容物を細胞質へ漏出させ酸化的ストレスを引き起こすことが示されている<ref name=Freeman2013><pubmed>23634225</pubmed></ref> 。また、細胞外にある凝集αシヌクレインは、エンドサイトーシスにより細胞内へ取り込まれた後にエンドソーム膜を破壊して細胞質へと漏出し、自らが鋳型となって内在性のαシヌクレインを凝集させる現象も報告されている<ref name=Flavin2017><pubmed>28527044</pubmed></ref> 。
シヌクレイン凝集過程で生じるプロトフィブリルは、生体膜上に環状のポア構造を形成することで膜透過性を亢進させ、細胞傷害性をもたらす可能性が推定されている<ref name=Furukawa2006><pubmed>16606366</pubmed></ref><ref name=Ding2002><pubmed>12162735</pubmed></ref> 。実際、凝集したαシヌクレインはリソソーム膜を破壊することでその内容物を細胞質へ漏出させ酸化的ストレスを引き起こすことが示されている<ref name=Freeman2013><pubmed>23634225</pubmed></ref> 。また、細胞外にある凝集αシヌクレインは、エンドサイトーシスにより細胞内へ取り込まれた後にエンドソーム膜を破壊して細胞質へと漏出し、自らが鋳型となって内在性のαシヌクレインを凝集させる現象も報告されている<ref name=Flavin2017><pubmed>28527044</pubmed></ref> 。


==== 小胞輸送障害 ====
==== 小胞輸送障害 ====
小胞輸送は積荷タンパクのオルガネラ間あるいは細胞内外での輸送を担う普遍的な細胞内ロジスティクスである。PDの原因・リスク遺伝子には小胞輸送制御に関与するものが多く、αシヌクレインもRab GTPaseやSNARE構成分子の機能に影響を与えることで小胞輸送系を間接的に制御していると推定されている<ref name=Hasegawa2017><pubmed>28539529</pubmed></ref><ref><pubmed>name=Huang2019><pubmed>30745863</pubmed></ref><ref><pubmed>name=Gundersen2020><pubmed>32044380</pubmed></ref> 。小胞輸送障害はタンパク分解機構の破綻、αシヌクレインの凝集・蓄積、ミトコンドリア障害など様々な機序を介し神経細胞死を誘導する<ref name=Oshima2016><pubmed>27112194</pubmed></ref><ref><pubmed>name=Hasegawa2017><pubmed>28539529</pubmed></ref><ref><pubmed>name=Yoshida2018><pubmed>29309590</pubmed></ref><ref><pubmed>name=Miura2014><pubmed>25107340</pubmed></ref><ref><pubmed>name=Mazzulli2011><pubmed>21700325</pubmed></ref> 。
小胞輸送は積荷タンパクのオルガネラ間あるいは細胞内外での輸送を担う普遍的な細胞内ロジスティクスである。PDの原因・リスク遺伝子には小胞輸送制御に関与するものが多く、αシヌクレインもRab GTPaseやSNARE構成分子の機能に影響を与えることで小胞輸送系を間接的に制御していると推定されている<ref name=Hasegawa2017><pubmed>28539529</pubmed></ref><ref name=Huang2019><pubmed>30745863</pubmed></ref><ref name=Gundersen2020><pubmed>32044380</pubmed></ref> 。小胞輸送障害はタンパク分解機構の破綻、αシヌクレインの凝集・蓄積、ミトコンドリア障害など様々な機序を介し神経細胞死を誘導する<ref name=Oshima2016><pubmed>27112194</pubmed></ref><ref name=Hasegawa2017><pubmed>28539529</pubmed></ref><ref name=Yoshida2018><pubmed>29309590</pubmed></ref><ref name=Miura2014><pubmed>25107340</pubmed></ref><ref name=Mazzulli2011><pubmed>21700325</pubmed></ref> 。


==== プリオン様伝播 ====
==== プリオン様伝播 ====
2003年ドイツの神経病理学者Braakは、PD患者脳内においてαシヌクレイン/Lewy病理は病初期に延髄迷走神経背側核に出現し、その後中脳から大脳辺縁系・新皮質へ拡大するという病変進展モデル(Braak仮説)を発表した<ref name=Braak2003><pubmed>12498954</pubmed></ref> 。さらに、胎児黒質組織片移植後を受けたPD剖検脳において、ドナーである胎児由来の神経細胞内にαシヌクレイン陽性のLewy小体様封入体が確認されたという事実が報告され<ref name=Kordower2008><pubmed>18391962</pubmed></ref> 、αシヌクレインが細胞間を伝播して病変を拡大させる可能性が示された。伝播現象は感染性タンパク粒子であるプリオンと類似性があることからプリオン様伝播とも表現される<ref name=Hasegawa2017><pubmed>28539529</pubmed></ref> 。疫学および病理学的検討から、αシヌクレイン病理は消化管粘膜や心臓交感神経など末梢神経系に出現し、一定の年月を経て中枢神経系に移行する可能性が指摘されている<ref name=Van Den Berge2019><pubmed>31254094</pubmed></ref><ref><pubmed>name=Borghammer2019><pubmed>31498132</pubmed></ref> 。細胞間を伝播するαシヌクレインは、ワクチン・抗体療法などの治療標的としても注目されている<ref name=Castonguay2020><pubmed>33104039</pubmed></ref> 。
2003年ドイツの神経病理学者Braakは、PD患者脳内においてαシヌクレイン/Lewy病理は病初期に延髄迷走神経背側核に出現し、その後中脳から大脳辺縁系・新皮質へ拡大するという病変進展モデル(Braak仮説)を発表した<ref name=Braak2003><pubmed>12498954</pubmed></ref> 。さらに、胎児黒質組織片移植後を受けたPD剖検脳において、ドナーである胎児由来の神経細胞内にαシヌクレイン陽性のLewy小体様封入体が確認されたという事実が報告され<ref name=Kordower2008><pubmed>18391962</pubmed></ref> 、αシヌクレインが細胞間を伝播して病変を拡大させる可能性が示された。伝播現象は感染性タンパク粒子であるプリオンと類似性があることからプリオン様伝播とも表現される<ref name=Hasegawa2017><pubmed>28539529</pubmed></ref> 。疫学および病理学的検討から、αシヌクレイン病理は消化管粘膜や心臓交感神経など末梢神経系に出現し、一定の年月を経て中枢神経系に移行する可能性が指摘されている<ref name=Van Den Berge2019><pubmed>31254094</pubmed></ref><ref name=Borghammer2019><pubmed>31498132</pubmed></ref> 。細胞間を伝播するαシヌクレインは、ワクチン・抗体療法などの治療標的としても注目されている<ref name=Castonguay2020><pubmed>33104039</pubmed></ref> 。


== 関連語 ==
== 関連語 ==