16,040
回編集
細編集の要約なし |
細 (→疾患との関わり) |
||
(同じ利用者による、間の27版が非表示) | |||
2行目: | 2行目: | ||
<font size="+1">[http://researchmap.jp/read0118148 笹井紀明]</font><br> | <font size="+1">[http://researchmap.jp/read0118148 笹井紀明]</font><br> | ||
''奈良先端科学技術大学院大学''<br> | ''奈良先端科学技術大学院大学''<br> | ||
DOI:<selfdoi /> | DOI:<selfdoi /> 原稿受付日:2017年1月17日 原稿完成日:2017年5月8日<br> | ||
担当編集委員:[http://researchmap.jp/ | 担当編集委員:[http://researchmap.jp/fujiomurakami 村上 富士夫](大阪大学 大学院生命機能研究科)<br> | ||
</div> | </div> | ||
10行目: | 10行目: | ||
== 発見の歴史 == | == 発見の歴史 == | ||
1980年、ドイツの生物学者[[wj:クリスティアーネ・ニュスライン=フォルハルト|Christiane Nüsslein-Volhard]]は、[[ショウジョウバエ]]における[[変異体]]スクリーニングから、幼虫表面の[[剛毛]](bristle)が規則正しく配置されず[[ハリネズミ]]の毛のように体表面全体に散らばる変異個体を発見し、それに[[hedgehog]]変異体と命名した<ref><pubmed>6776413</pubmed></ref><ref><pubmed>17928586</pubmed></ref>。その後の研究から、これは[[分泌]]因子をコードする[[wj:遺伝子|遺伝子]]の変異によるものであることが明らかとなった<ref><pubmed>11731473</pubmed></ref>。 | 1980年、ドイツの生物学者[[wj:クリスティアーネ・ニュスライン=フォルハルト|Christiane Nüsslein-Volhard]]は、[[ショウジョウバエ]]における[[変異体]]スクリーニングから、幼虫表面の[[剛毛]](bristle)が規則正しく配置されず[[ハリネズミ]]の毛のように体表面全体に散らばる変異個体を発見し、それに[[hedgehog]]変異体と命名した<ref name=ref4><pubmed>6776413</pubmed></ref><ref name=ref5><pubmed>17928586</pubmed></ref>。その後の研究から、これは[[分泌]]因子をコードする[[wj:遺伝子|遺伝子]]の変異によるものであることが明らかとなった<ref><pubmed>11731473</pubmed></ref>。 | ||
一方、1990年の前半に[[脊椎動物]]においても3つのヘッジホッグ相同遺伝子が単離され、そのうち[[desert hedgehog]]([[Dhh]])と[[indian hedgehog]]([[Ihh]] | 一方、1990年の前半に[[脊椎動物]]においても3つのヘッジホッグ相同遺伝子が単離され、そのうち[[desert hedgehog]]([[Dhh]])と[[indian hedgehog]]([[Ihh]])は実在するハリネズミの種名から、ソニック・ヘッジホッグ (sonic hedgehog, Shh)はテレビゲームのキャラクターからそれぞれ命名された。Dhhは精子形成に<ref><pubmed>11090455</pubmed></ref>、Ihhが軟骨細胞の形成・増殖にそれぞれ重要な役割を果たす<ref><pubmed>21364421</pubmed></ref><ref><pubmed>10631175</pubmed></ref>一方で、ソニック・ヘッジホッグ<ref><pubmed>8269518</pubmed></ref><ref><pubmed>8269519</pubmed></ref><ref><pubmed>7916661</pubmed></ref>は[[中枢神経系]]や[[wj:四肢|四肢]]形成をはじめとする[[胚発生]]([[器官発生]])の多くに重要であることが示され、現在ヘッジホッグ関連遺伝子の中で最も解析が進んでいる。 | ||
==ファミリー== | ==ファミリー== | ||
20行目: | 20行目: | ||
[[image:Shh1.png|thumb|300px|'''図1.ソニック・ヘッジホッグタンパク質の修飾と分泌''']] | [[image:Shh1.png|thumb|300px|'''図1.ソニック・ヘッジホッグタンパク質の修飾と分泌''']] | ||
ソニック・ヘッジホッグ遺伝子からは転写・翻訳されて、まず45 kDa程度の[[wj:ポリペプチド|ポリペプチド]]が前駆体として生じる。このポリペプチドは[[wj:小胞体|小胞体]]に運ばれ、アミノ末端とカルボキシル末端の2つの部分に分解される('''図1''')。 | |||
分泌されてその活性を発揮するのはアミノ末端側のポリペプチド([[ShhN]]; 19kDa程度)である<ref><pubmed>21357747</pubmed></ref>。その構造は2つのαヘリックスと6つのβストランドからなるα+βサンドイッチ構造を形成しており、[[wj:亜鉛|亜鉛]]イオンを一分子配位している<ref name= | 分泌されてその活性を発揮するのはアミノ末端側のポリペプチド([[ShhN]]; 19kDa程度)である<ref><pubmed>21357747</pubmed></ref>。その構造は2つのαヘリックスと6つのβストランドからなるα+βサンドイッチ構造を形成しており、[[wj:亜鉛|亜鉛]]イオンを一分子配位している<ref name=ref14><pubmed>7477329</pubmed></ref>。 | ||
ShhNには[[パルミチン酸]](アミノ末端)と[[コレステロール]](カルボキシル末端)が付加されるが、これらの修飾はShhNの効率的な分泌と、組織内での適切な分布に重要である<ref><pubmed>16611729</pubmed></ref><ref><pubmed>11486055</pubmed></ref><ref><pubmed>15075292</pubmed></ref><ref><pubmed>8824192</pubmed></ref><ref><pubmed>11389830</pubmed></ref><ref><pubmed>23112049</pubmed></ref>。一方、カルボキシル末端側([[ShhC]])はこの分解を制御するほか、[[コレステロール転移酵素]]としてアミノ末端側フラグメントの修飾に寄与する<ref><pubmed>15189162</pubmed></ref>。 | |||
==分泌 == | ==分泌 == | ||
分解と修飾によって成熟型となったShhNは細胞から分泌されるが、その分泌には[[膜タンパク質]][[Dispatched]]と、分泌因子[[Scube]]の存在が必要である<ref name=ref24></ref>。 | 分解と修飾によって成熟型となったShhNは細胞から分泌されるが、その分泌には[[膜タンパク質]][[Dispatched]]と、分泌因子[[Scube]]の存在が必要である<ref name=ref24></ref>。 | ||
この分泌経路のほかに最近、ソニック・ヘッジホッグタンパク質が[[サイトニーム]](cytoneme)と呼ばれる突起上の[[細胞膜]]構造の先端まで運搬され、そこで小胞を形成して細胞外へ分泌されるという経路が提唱されている。サイトニームは[[糸状仮足]]([[filopodia]])が長く変形した形状をしており、内部には[[アクチン]]が含まれている。ショウジョウバエの[[翅原基]](wing disc)ではヘッジホッグを産生する細胞がこのような構造を持っており<ref><pubmed>10367889</pubmed></ref>、発現部位から遠い細胞までシグナルを届けている<ref name=ref1></ref><ref><pubmed>23276604</pubmed></ref><ref><pubmed>25483805</pubmed></ref><ref><pubmed>25472772</pubmed></ref> | この分泌経路のほかに最近、ソニック・ヘッジホッグタンパク質が[[サイトニーム]](cytoneme)と呼ばれる突起上の[[細胞膜]]構造の先端まで運搬され、そこで小胞を形成して細胞外へ分泌されるという経路が提唱されている。サイトニームは[[糸状仮足]]([[filopodia]])が長く変形した形状をしており、内部には[[アクチン]]が含まれている。ショウジョウバエの[[翅原基]](wing disc)ではヘッジホッグを産生する細胞がこのような構造を持っており<ref><pubmed>10367889</pubmed></ref>、発現部位から遠い細胞までシグナルを届けている<ref name=ref1></ref><ref><pubmed>23276604</pubmed></ref><ref><pubmed>25483805</pubmed></ref><ref><pubmed>25472772</pubmed></ref>。サイトニームは近年[[脊椎動物]]でもその存在が知られるようになった<ref><pubmed>23624372</pubmed></ref>。 | ||
==発現== | ==発現== | ||
胚発生期では[[神経管]]の腹側と[[zona limitans]] | 胚発生期では[[頭尾軸]]にかけて[[神経管]]の最も腹側に位置する[[底板]]領域(floor plate)とその下部に位置する[[中胚葉]]系の組織([[脊策]]:notochord)、さらに[[前脳]]の腹側と[[zona limitans intrathalamica]](ZLI)と呼ばれるる前脳の一領域、さらに[[肢芽]](limb bud; 四肢が発生する場所)の一部に、主に発現することが知られている。成体では[[脳室下帯]](subventricular zone)の[[神経幹細胞]]の周辺部に見られる<ref name=ref1 /><ref name=ref2 /><ref name=ref3 />。 | ||
==機能== | ==機能== | ||
===シグナル経路=== | ===シグナル経路=== | ||
[[image:Shh2.png|thumb|300px|'''図2.ソニック・ヘッジホッグによる細胞内シグナル伝達経路'''<br> | [[image:Shh2.png|thumb|300px|'''図2.ソニック・ヘッジホッグによる細胞内シグナル伝達経路'''<br>[[PIP3|PIP<sub>3</sub>]]:[[フォスファチジルイノシトール3リン酸]]、Gli<sup>FL</sup>:全長Gli、Gli<sup>Rep</sup>:抑制型Gli、Gli<sup>Act</sup>:活性化型Gli、Cul3:Cullin3。<br>主に<ref name=ref37 /><ref name=ref39 /><ref name=ref40 />を参考に作成。]] | ||
==== Ptc-Smo-Gli経路 ==== | ==== Ptc-Smo-Gli経路 ==== | ||
45行目: | 45行目: | ||
細胞膜で受容されたシグナルを核に伝達するのは、[[Gli]](ショウジョウバエでは[[Cubitus interruptus]]; Ci)と呼ばれる[[Znフィンガー型転写因子]]であり、脊椎動物に存在する3種類のGli([[Gli1]]-[[Gli3|3]])<ref name=ref31><pubmed>21801010</pubmed></ref> のうちソニック・ヘッジホッグのシグナルを1次的に伝達するのは[[Gli2]],3である('''図3''')。Gli2,3は繊毛内でSmoと何らかの相互作用をすることにより、シグナルを繊毛から核へと伝達する<ref name=ref32><pubmed>16254602</pubmed></ref>。 | 細胞膜で受容されたシグナルを核に伝達するのは、[[Gli]](ショウジョウバエでは[[Cubitus interruptus]]; Ci)と呼ばれる[[Znフィンガー型転写因子]]であり、脊椎動物に存在する3種類のGli([[Gli1]]-[[Gli3|3]])<ref name=ref31><pubmed>21801010</pubmed></ref> のうちソニック・ヘッジホッグのシグナルを1次的に伝達するのは[[Gli2]],3である('''図3''')。Gli2,3は繊毛内でSmoと何らかの相互作用をすることにより、シグナルを繊毛から核へと伝達する<ref name=ref32><pubmed>16254602</pubmed></ref>。 | ||
Gli2/3は転写活性領域と抑制領域を併せ持つ転写因子で、ソニック・ヘッジホッグシグナルが存在しないときには翻訳されたポリペプチドが恒常的に分解([[ユビキチン化]])されてアミノ末端側だけの断片として存在し、転写抑制因子として働く。Gli2/3のユビキチン化は、まず[[PKA]]([[プロテインキナーゼA]])と[[Glycogen synthase kinase 3|Glycogen Synthase Kinase 3]] | Gli2/3は転写活性領域と抑制領域を併せ持つ転写因子で、ソニック・ヘッジホッグシグナルが存在しないときには翻訳されたポリペプチドが恒常的に分解([[ユビキチン化]])されてアミノ末端側だけの断片として存在し、転写抑制因子として働く。Gli2/3のユビキチン化は、まず[[PKA]]([[プロテインキナーゼA]])と[[Glycogen synthase kinase 3|Glycogen Synthase Kinase 3]]β([[GSK3β]])によって[[セリン]]残基が[[リン酸化]]され、それを、 [[β-TrCP]]([[E3ユビキチンリガーゼ]])と[[足場タンパク質]][[Cullin3]]を含むSCF β-TrCP複合体がターゲットすることによって進む<ref><pubmed>16705181</pubmed></ref><ref name=ref34><pubmed>16611981</pubmed></ref><ref><pubmed>16651270</pubmed></ref>。 | ||
いったんソニック・ヘッジホッグシグナルが細胞に導入されるとPKAが不活化され<ref name=ref36><pubmed>24336288</pubmed></ref><ref name=ref37><pubmed>27799542</pubmed></ref>、Gli2/3のユビキチン分解が抑制されて全長型Gli2/3は繊毛内に移動する<ref name=ref32><pubmed>16254602</pubmed></ref><ref><pubmed>20154143</pubmed></ref>。その後、核に移動して遺伝子発現を誘導する<ref name=ref39><pubmed>23799571</pubmed></ref>。この際にはGli2/3に対してSPOPと呼ばれるユビキチンリガーゼによるユビキチン化が起こってタンパク質自体の安定性が変化する<ref name=ref40><pubmed>20360384</pubmed></ref><ref><pubmed>20463034</pubmed></ref>ほか、さまざまな修飾(リン酸化、[[アセチル化]]、[[SUMO化]])も関与してその転写活性を制御する<ref name=ref40><pubmed>20360384</pubmed></ref><ref><pubmed>20711444</pubmed></ref><ref><pubmed>23762415</pubmed></ref><ref><pubmed>24373970</pubmed></ref>。 | いったんソニック・ヘッジホッグシグナルが細胞に導入されるとPKAが不活化され<ref name=ref36><pubmed>24336288</pubmed></ref><ref name=ref37><pubmed>27799542</pubmed></ref>、Gli2/3のユビキチン分解が抑制されて全長型Gli2/3は繊毛内に移動する<ref name=ref32><pubmed>16254602</pubmed></ref><ref><pubmed>20154143</pubmed></ref>。その後、核に移動して遺伝子発現を誘導する<ref name=ref39><pubmed>23799571</pubmed></ref>。この際にはGli2/3に対してSPOPと呼ばれるユビキチンリガーゼによるユビキチン化が起こってタンパク質自体の安定性が変化する<ref name=ref40><pubmed>20360384</pubmed></ref><ref><pubmed>20463034</pubmed></ref>ほか、さまざまな修飾(リン酸化、[[アセチル化]]、[[SUMO化]])も関与してその転写活性を制御する<ref name=ref40><pubmed>20360384</pubmed></ref><ref><pubmed>20711444</pubmed></ref><ref><pubmed>23762415</pubmed></ref><ref><pubmed>24373970</pubmed></ref>。 | ||
51行目: | 51行目: | ||
Gliタンパク質の[[DNA]]結合配列にはGACCACCCAという配列が提唱されてきた<ref name=ref45><pubmed>9118802</pubmed></ref> が、最近、解離定数(結合のアフィニティー)が異なる別の配列も見つかっている<ref><pubmed>23153497</pubmed></ref>。 | Gliタンパク質の[[DNA]]結合配列にはGACCACCCAという配列が提唱されてきた<ref name=ref45><pubmed>9118802</pubmed></ref> が、最近、解離定数(結合のアフィニティー)が異なる別の配列も見つかっている<ref><pubmed>23153497</pubmed></ref>。 | ||
Gli1-3は多くの臓器に発現しているためにそれらの遺伝子変異マウスの表現型も多様であり<ref><pubmed>9731531</pubmed></ref> | Gli1-3は多くの臓器に発現しているためにそれらの遺伝子変異マウスの表現型も多様であり<ref><pubmed>9731531</pubmed></ref>、神経系で強い表現型が現れるものもある。Gli2変異マウスでは、Shhシグナルの影響を受ける底板とV3[[介在神経]]領域の[[分化]]が抑制され、パターン形成に異常が生じて出生直後に死亡する<ref><pubmed>9636069</pubmed></ref>。一方、Gli3変異マウスでは、主に脳領域でソニック・ヘッジホッグシグナルがむしろ亢進した表現型になるため<ref><pubmed>8387379</pubmed></ref><ref><pubmed>11017169</pubmed></ref>、Gli3が主に転写抑制型として働くことが示唆される。Gli1単独の変異マウスでは神経系では大きな表現型が見つかっていないが、Gli2変異による表現型をGli1のノックインによって相補することができるため、Gli2の転写活性型と同様の働きをしていると考えられる<ref><pubmed>10725236</pubmed></ref><ref><pubmed>11748151</pubmed></ref>。 | ||
[[image:Shh3.png|thumb|300px|'''図3.Gliタンパク質の構造'''<br> | [[image:Shh3.png|thumb|300px|'''図3.Gliタンパク質の構造'''<br>アミノ酸番号は、マウスのものである。*はPKAによるリン酸化サイト、ZnF:Znフィンガー、矢頭は分解されて転写抑制型を生じる部位<ref name=ref34 />。<br><ref name=ref31 /><ref name=ref34 />から改変。]] | ||
ソニック・ヘッジホッグシグナルのターゲット遺伝子として代表的なものは、[[神経前駆細胞]]における[[Olig2]]や[[Nkx2.2]], [[FoxA2]]のように細胞の個性付けに関与する転写因子、またソニック・ヘッジホッグシグナルに直接関与するもの(Ptc, Gli1)などである<ref name=ref1></ref><ref name=ref3></ref>。 | ソニック・ヘッジホッグシグナルのターゲット遺伝子として代表的なものは、[[神経前駆細胞]]における[[Olig2]]や[[Nkx2.2]], [[FoxA2]]のように細胞の個性付けに関与する転写因子、またソニック・ヘッジホッグシグナルに直接関与するもの(Ptc, Gli1)などである<ref name=ref1></ref><ref name=ref3></ref>。 | ||
59行目: | 59行目: | ||
先に述べたようにソニック・ヘッジホッグシグナルには細胞膜上に形成される1次繊毛の存在が必須である。1次繊毛に形成不全が生じるとソニック・ヘッジホッグシグナルが細胞に導入されず、結果として[[神経管]]はソニック・ヘッジホッグ遺伝子変異マウスに類似した表現型になる<ref name=ref39><pubmed>23799571</pubmed></ref>。また、Gli3の不活性型を生じるプロセシングにはPKAが必要であり、PKA遺伝子のノックアウトはソニック・ヘッジホッグシグナルの異常亢進を反映した表現型となる<ref><pubmed>11886853</pubmed></ref>。 | 先に述べたようにソニック・ヘッジホッグシグナルには細胞膜上に形成される1次繊毛の存在が必須である。1次繊毛に形成不全が生じるとソニック・ヘッジホッグシグナルが細胞に導入されず、結果として[[神経管]]はソニック・ヘッジホッグ遺伝子変異マウスに類似した表現型になる<ref name=ref39><pubmed>23799571</pubmed></ref>。また、Gli3の不活性型を生じるプロセシングにはPKAが必要であり、PKA遺伝子のノックアウトはソニック・ヘッジホッグシグナルの異常亢進を反映した表現型となる<ref><pubmed>11886853</pubmed></ref>。 | ||
Shh-Ptc-Smo- | Shh-Ptc-Smo-Gliを主軸とするソニック・ヘッジホッグシグナルを制御する調節因子の存在も知られている。細胞質に局在するタンパク質の一種[[SuFu]]([[Suppressor of Fused]])は[[cAMP]]依存的に抑制型Gli2/3と結合して、安定化する<ref name=ref40><pubmed>20360384</pubmed></ref>。 | ||
そのほかに[[GPR161]](Gタンパク質共役型受容体)のように繊毛に局在してそのcAMP濃度を上昇させ、ソニック・ヘッジホッグシグナルを負に制御する因子の存在も知られている<ref><pubmed>16459298</pubmed></ref><ref><pubmed>20956384</pubmed></ref><ref><pubmed>23332756</pubmed></ref>。 | そのほかに[[GPR161]](Gタンパク質共役型受容体)のように繊毛に局在してそのcAMP濃度を上昇させ、ソニック・ヘッジホッグシグナルを負に制御する因子の存在も知られている<ref><pubmed>16459298</pubmed></ref><ref><pubmed>20956384</pubmed></ref><ref><pubmed>23332756</pubmed></ref>。 | ||
68行目: | 68行目: | ||
==== ほかの経路 ==== | ==== ほかの経路 ==== | ||
ソニック・ヘッジホッグは交連神経細胞のガイダンスに必須である<ref name=ref58><pubmed>15746914</pubmed></ref><ref name=ref59><pubmed>19447091</pubmed></ref><ref name=ref60><pubmed>12679031</pubmed></ref>。ソニック・ヘッジホッグは神経のガイダンス因子として知られる[[ | ソニック・ヘッジホッグは交連神経細胞のガイダンスに必須である<ref name=ref58><pubmed>15746914</pubmed></ref><ref name=ref59><pubmed>19447091</pubmed></ref><ref name=ref60><pubmed>12679031</pubmed></ref>。ソニック・ヘッジホッグは神経のガイダンス因子として知られる[[ネトリン]]と協調して働き、[[交連神経]]が[[脊髄]]正中(midline)を交差するのに必要である<ref name=ref60><pubmed>12679031</pubmed></ref>。このガイダンスにはPtc/Smoではなく[[HIP]]([[hedgehog interacting protein]])がソニック・ヘッジホッグの受容体になっており<ref name=ref58 /> 、さらに細胞内では[[Srcファミリーキナーゼ]]([[Src family kinase]]; [[SFK]])が活性化されている<ref name=ref59 /> 。また、線維芽細胞の化学遊走にもソニック・ヘッジホッグが関与しているという報告があり、さらにこの現象においてはSmoが繊毛に局在しなくても細胞内シグナルが惹起されるため、従来とは異なるメカニズムが示唆されている<ref><pubmed>22912493</pubmed></ref>。 | ||
===神経系での機能=== | ===神経系での機能=== | ||
ソニック・ヘッジホッグの神経系における機能解析の歴史は1990年代にさかのぼる。 | |||
1991年、[[w:Thomas Jessell|Thomas M. Jessell]]と山田俊哉は、ニワトリ胚の脊策を神経管の別の場所に移植し、移植した周辺領域の細胞が[[底板]]([[floor plate]])や[[運動神経]]([[motor neuron]])に異所的に分化することを発見し、脊策と底板から分化誘導因子が分泌されていることを示した<ref><pubmed>1991324</pubmed></ref><ref><pubmed>8500163</pubmed></ref>。 | |||
その後、この分泌因子がソニック・ヘッジホッグであること<ref><pubmed>8124714</pubmed></ref> 、さらにソニック・ヘッジホッグが[[神経管]]内で濃度勾配を形成して<ref><pubmed>7736596</pubmed></ref><ref><pubmed>20066087</pubmed></ref>、[[モルフォゲン]]とし働いて濃度依存的に運動神経や介在神経の前駆細胞を誘導する(詳細は別項で議論する)。 | |||
詳細な発現・機能解析の結果、Shhは神経発生の初期には前脳の領域化に<ref><pubmed>883777</pubmed></ref><ref><pubmed>17030124</pubmed></ref>)、その後中枢神経全体のパターン形成に関与することが明らかとなった。さらに胚発生が進み、出生前後になると、小脳のプルキンエ細胞(Purkinje cells)からShhが分泌され、顆粒細胞の前駆細胞に作用してその増殖を促進し、さらにバーグマングリア細胞への分化を誘導することが知られている<ref><pubmed>10226030</pubmed></ref><ref><pubmed>15183722</pubmed></ref><ref><pubmed>10375501</pubmed></ref>。 | |||
また生後の脳においても神経前駆細胞の存在が知られており、ソニック・ヘッジホッグシグナルが微小環境(ニッチ:niche)において活性化されて前駆細胞の幹細胞性を維持している<ref><pubmed>16208373</pubmed></ref><ref><pubmed>27666792</pubmed></ref>。 | |||
==実験手法 == | ==実験手法 == | ||
細胞レベルでの解析においてソニック・ヘッジホッグシグナルに反応する培養細胞は少なく、よく使われるのはマウスの線維芽細胞NIH3T3細胞<ref name=ref69><pubmed>25833741</pubmed></ref>やヒト角化細胞<ref><pubmed>16880536</pubmed></ref>、ニワトリやマウスの神経前駆細胞([[胚性幹細胞]]から分化させたものや胚から単離したもの)である<ref name=ref71><pubmed>26972603</pubmed></ref><ref><pubmed>25026549</pubmed></ref>。ソニック・ヘッジホッグシグナルを受容する1次繊毛は、[[細胞周期]]のG0/G1期にのみ生じるため、特にNIH3T3でソニック・ヘッジホッグシグナルの実験を行う際にはあらかじめ血清飢餓状態にしてG0/G1期の細胞を多数得ておくことが重要である。細胞において実験的にソニック・ヘッジホッグシグナルを活性化する場合、大腸菌で作成した(つまりコレステロール修飾がされていない)リコンビナントタンパク質も活性は持っている<ref name=ref71><pubmed>26972603</pubmed></ref><ref><pubmed>10564658</pubmed></ref><ref name=ref74><pubmed>18046410</pubmed></ref>。化合物としては、purmorphamineとSAGがSmoを標的とし<ref><pubmed>16408082</pubmed></ref>、ソニック・ヘッジホッグのアゴニストとして用いられている。一方、cyclopamineとSANT-1は同じくSmoを標的とし、その活性を阻害することによりソニック・ヘッジホッグシグナルの[[アンタゴニスト]]として働く<ref name=ref77><pubmed>12414725</pubmed></ref><ref name=ref078><pubmed>23548480</pubmed></ref>。 | |||
ソニック・ヘッジホッグシグナルの強度を計測する方法としては、luciferaseまたはGFPのレポーターコンストラクトが多用されるが<ref name=ref45><pubmed>9118802</pubmed></ref><ref name=ref76><pubmed>22265416</pubmed></ref>、ほかの方法として、定量PCRを用いてソニック・ヘッジホッグシグナルのターゲット遺伝子であるGli1やPtc1の発現量を解析してもよい<ref name=ref69><pubmed>25833741</pubmed></ref><ref name=ref74><pubmed>18046410</pubmed></ref>。NIH3T3では、ソニック・ヘッジホッグシグナルの添加時間とともにGli1やPtc1の発現量が増加する<ref name=ref69><pubmed>25833741</pubmed></ref>。一方、神経前駆細胞内ではソニック・ヘッジホッグシグナルは数時間以内にいったん活性化し、その後、負のフィードバックが起こって鎮静化する<ref name=ref74><pubmed>18046410</pubmed></ref><ref name=ref76><pubmed>22265416</pubmed></ref><ref><pubmed>20532235</pubmed></ref>。この負のフィードバックが起きるメカニズムとしては、Ptcが細胞膜上に多数存在するようになってソニック・ヘッジホッグタンパク質が枯渇するというもの<ref name=ref74><pubmed>18046410</pubmed></ref>や、活性型Gliタンパク質が不活性型に比べて不安定であるというもの<ref name=ref40><pubmed>20360384</pubmed></ref>などがあるが、全容はまだ明らかになっていない。 | |||
==疾患との関わり== | ==疾患との関わり== | ||
87行目: | 91行目: | ||
細胞内コレステロール輸送に関与する遺伝子NPC1/2に変異が生じると[[リソソーム]]にコレステロールが蓄積するためにShhNに十分なコレステロールが供給されずに修飾不全となり、効率的な分泌が不可能になってしまう。[[C型ニーマン・ピック病]](C型Niemann-Pick syndrome)はこのNPC1/2遺伝子の変異に起因する遺伝性疾患であり、[[小脳]]の不完全形成や肝不全、[[発達障害]]や運動障害、新生児黄疸などの重篤な小児障害を引き起こす<ref><pubmed>9211850</pubmed></ref><ref name=ref24><pubmed>22902404</pubmed></ref>。 | 細胞内コレステロール輸送に関与する遺伝子NPC1/2に変異が生じると[[リソソーム]]にコレステロールが蓄積するためにShhNに十分なコレステロールが供給されずに修飾不全となり、効率的な分泌が不可能になってしまう。[[C型ニーマン・ピック病]](C型Niemann-Pick syndrome)はこのNPC1/2遺伝子の変異に起因する遺伝性疾患であり、[[小脳]]の不完全形成や肝不全、[[発達障害]]や運動障害、新生児黄疸などの重篤な小児障害を引き起こす<ref><pubmed>9211850</pubmed></ref><ref name=ref24><pubmed>22902404</pubmed></ref>。 | ||
逆にヘッジホッグシグナルが亢進しすぎると[[ | 逆にヘッジホッグシグナルが亢進しすぎると[[髄芽腫]]([[medulloblastoma]])という[[wj:小児がん|小児がん]]を引き起こすことが知られている<ref name=ref78><pubmed>25150496</pubmed></ref>。この疾患は元来放射線治療や外科的手術による腫瘍の除去しか治療法がなかったが、最近、[[三量体Gタンパク質|Gタンパク質]]の一種[[Gαs]]を活性化させることによりソニック・ヘッジホッグシグナルをブロックする方法が検討されつつある<ref name=ref78><pubmed>25150496</pubmed></ref>。 | ||
==参考文献== | ==参考文献== | ||
<references/> | <references/> |