「シングルセルRNAシーケンシング」の版間の差分

編集の要約なし
(bioRxivのhttps://doi.org/10.1101/2020.10.09.333633 のリンクを、査読済みの正式論文 https://doi.org/10.7554/eLife.63907 のリンクに変更しました。)
編集の要約なし
82行目: 82行目:
 このような品質管理、ノーマライゼーションの過程を経て<ref><pubmed>28504683</pubmed></ref>、scRNA-seqのデータ解析において、最初に行うのが、[[次元圧縮]] (dimensionality reduction)である<ref><pubmed>30617341</pubmed></ref><ref><pubmed>31780648</pubmed></ref><ref><pubmed>31955711</pubmed></ref><ref><pubmed>31823809</pubmed></ref>。主成分分析 (Principal component analysis, PCA)、更に発展させた均一マニフォールド近似と投影(Uniform Manifold Approximation and Projection, UMAP)、Diffusion maps<ref><pubmed> 26002886
 このような品質管理、ノーマライゼーションの過程を経て<ref><pubmed>28504683</pubmed></ref>、scRNA-seqのデータ解析において、最初に行うのが、[[次元圧縮]] (dimensionality reduction)である<ref><pubmed>30617341</pubmed></ref><ref><pubmed>31780648</pubmed></ref><ref><pubmed>31955711</pubmed></ref><ref><pubmed>31823809</pubmed></ref>。主成分分析 (Principal component analysis, PCA)、更に発展させた均一マニフォールド近似と投影(Uniform Manifold Approximation and Projection, UMAP)、Diffusion maps<ref><pubmed> 26002886
</pubmed></ref>, t分布型確率的近傍埋込み (t-distributed Stochastic Neighbor Embedding, tSNE)などの手法が用いられる。 特に、[http://www.jmlr.org/papers/v9/vandermaaten08a.html tSNE]と[https://arxiv.org/abs/1802.03426 UMAP]は、高次元データを低次元の点の集合として可視化することで、それぞれの細胞の持つ遺伝子発現状態の類似度についての直観的な表示が可能でありしばしば用いられる('''図3''')。tSNEよりUMAPの方が迅速に類似集団間の関係が明確になるので、最近はUMAPを利用することが多くなってきている。次に、[[Louvainアルゴリズム]]などでクラスタリング([[コミュニティ分割]])を行いグラフ上に表示できる('''図3'''の色分け)。こうして、異なる転写状態を示す細胞の集合が別のクラスターとして表示され、同定可能になる<ref><pubmed>31500660</pubmed></ref>。
</pubmed></ref>, t分布型確率的近傍埋込み (t-distributed Stochastic Neighbor Embedding, tSNE)などの手法が用いられる。 特に、[http://www.jmlr.org/papers/v9/vandermaaten08a.html tSNE]と[https://arxiv.org/abs/1802.03426 UMAP]は、高次元データを低次元の点の集合として可視化することで、それぞれの細胞の持つ遺伝子発現状態の類似度についての直観的な表示が可能でありしばしば用いられる('''図3''')。tSNEよりUMAPの方が迅速に類似集団間の関係が明確になるので、最近はUMAPを利用することが多くなってきている。次に、[[Louvainアルゴリズム]]などでクラスタリング([[コミュニティ分割]])を行いグラフ上に表示できる('''図3'''の色分け)。こうして、異なる転写状態を示す細胞の集合が別のクラスターとして表示され、同定可能になる<ref><pubmed>31500660</pubmed></ref>。
  [[ファイル:scFig3.jpg|サムネイル|250px|'''図3. tSNEとUMAPによる同じデータの可視化'''<br>網膜(ニワトリ)の視細胞のデータを用いて執筆者が作製[https://doi.org/10.7554/eLife.63907]。]]
  [[ファイル:scFig3.jpg|サムネイル|250px|'''図3. tSNEとUMAPによる同じデータの可視化'''<br>網膜(ニワトリ)の視細胞のデータを用いて執筆者が作製<ref><pubmed> 33393903</pubmed></ref>。]]


==データ解析==
==データ解析==
===細胞クラスターの解釈とマーカー遺伝子候補の発見===
===細胞クラスターの解釈とマーカー遺伝子候補の発見===
 scRNA-seqデータから得られる生物学的知見には、内在的に存在する細胞の種類、外部刺激や環境で変化した細胞の状態、そして種類や変化により特徴的に発現するマーカー遺伝子候補の発見がある<ref><pubmed>27824854</pubmed></ref><ref><pubmed>32033589</pubmed></ref>。クラスタリングにより、異なった細胞集団の存在が認識されると、それぞれのクラスター(群)に特徴的に発現している具体的な遺伝子を探索し、細胞集団の持つバイオマーカーによって、そのクラスター(群)の同定が可能になる。例えば、既に神経細胞とグリア細胞に特異的に発現する典型的マーカーはよく知られており、それぞれのクラスターの識別は容易である。更に、神経細胞のタイプ(下記参考)を区別できるマーカーや、外部刺激によって遺伝子発現状態が変化した神経細胞の状態は、In situ hybridizationや免疫組織化学などにより確認できる。このようなクラスターごとに発現が異なる遺伝子(差次的発現遺伝子)を見つけるためには(Differential expression analysis, DE analysis)、SeuratのFindMarkersコマンド中でも利用可能であるコード(MAST、DESeq2など<ref><pubmed>26653891</pubmed></ref><ref><pubmed>25516281</pubmed></ref><ref><pubmed>30658573</pubmed></ref>)を用いることができる。細胞ごとの差次的発現遺伝子のVisualization(表示可視化)には、[[ドットプロット]](dot plot)、[[ヴァイオリンプロット]](violin plot)、[[リッジプロット]](Ridge plot, joy plot)、UMAPなどの次元圧縮図上に転写物量をプロットするFeatureプロット(feature plot)などが、目的に応じて頻繁に用いられる('''図4''')。
 scRNA-seqデータから得られる生物学的知見には、内在的に存在する細胞の種類、外部刺激や環境で変化した細胞の状態、そして種類や変化により特徴的に発現するマーカー遺伝子候補の発見がある<ref><pubmed>27824854</pubmed></ref><ref><pubmed>32033589</pubmed></ref>。クラスタリングにより、異なった細胞集団の存在が認識されると、それぞれのクラスター(群)に特徴的に発現している具体的な遺伝子を探索し、細胞集団の持つバイオマーカーによって、そのクラスター(群)の同定が可能になる。例えば、既に神経細胞とグリア細胞に特異的に発現する典型的マーカーはよく知られており、それぞれのクラスターの識別は容易である。更に、神経細胞のタイプ(下記参考)を区別できるマーカーや、外部刺激によって遺伝子発現状態が変化した神経細胞の状態は、In situ hybridizationや免疫組織化学などにより確認できる。このようなクラスターごとに発現が異なる遺伝子(差次的発現遺伝子)を見つけるためには(Differential expression analysis, DE analysis)、SeuratのFindMarkersコマンド中でも利用可能であるコード(MAST、DESeq2など<ref><pubmed>26653891</pubmed></ref><ref><pubmed>25516281</pubmed></ref><ref><pubmed>30658573</pubmed></ref>)を用いることができる。細胞ごとの差次的発現遺伝子のVisualization(表示可視化)には、[[ドットプロット]](dot plot)、[[ヴァイオリンプロット]](violin plot)、[[リッジプロット]](Ridge plot, joy plot)、UMAPなどの次元圧縮図上に転写物量をプロットするFeatureプロット(feature plot)などが、目的に応じて頻繁に用いられる('''図4''')。
[[ファイル:scFig4.jpg|サムネイル|300px|'''図4.scRNA-seqデータの可視化の例 '''<br>A. ドットプロット。B.ヴァイオリンプロット。C. リッジプロット。D. UMAP(灰色)に転写物量(青)をプロットした Featureプロット。網膜の視細胞のデータを用いて執筆者が作製[https://doi.org/10.7554/eLife.63907]。]]
[[ファイル:scFig4.jpg|サムネイル|300px|'''図4.scRNA-seqデータの可視化の例 '''<br>A. ドットプロット。B.ヴァイオリンプロット。C. リッジプロット。D. UMAP(灰色)に転写物量(青)をプロットした Featureプロット。網膜の視細胞のデータを用いて執筆者が作製<ref><pubmed> 33393903</pubmed></ref>。]]
===擬時系列解析===
===擬時系列解析===
 実験的なノイズとは別に生物学的に意味のある遺伝子発現の変動には、位置情報、[[細胞周期]]、[[概日リズム]]、発現変動が大きい破裂型[[プロモーター]]の作動などの理由で 変動が見られるものもある<ref name=Luecken2019><pubmed>31217225</pubmed></ref><ref><pubmed> 26000846</pubmed></ref>。特に、刺激・薬剤処理やさまざまな病態の進行や治療に伴う細胞の変化、発生途上にある[[細胞系譜]]や[[細胞分化]]といった細胞の遷移状態の解析([[軌道推定]](Trajectory inference);[[擬時系列解析]](擬似時系列解析)、Pseudo-time analysis)には、scRNA-seqデータを用いることが効果的である<ref><pubmed>29576429</pubmed></ref><ref><pubmed>28813177</pubmed></ref><ref><pubmed>29565398</pubmed></ref>。しばしば用いられるMonocle3 <ref><pubmed>30787437</pubmed></ref>[https://cole-trapnell-lab.github.io/monocle3/]など、多くのコードを収集、比較しているサイトがある [https://dynverse.org][https://github.com/agitter/single-cell-pseudotime]。RNA velocityといったスプライシングされていく転写産物の量から細胞の分化状態を推定する方法もある<ref><pubmed>30089906</pubmed></ref><ref><pubmed> 32747759</pubmed></ref>。しかし、これらの方法は、あくまで細胞系譜や細胞分化の推定に過ぎない。細胞系譜を更に確実に観察しつつ、scRNA-seqを行うことで、細胞タイプの系統関係を調べる方法として、[[CRISPR-Cas9]]を用いた[[ゲノム編集]]による痕跡追跡記録法を導入したscGESTALT<ref><pubmed>29608178</pubmed></ref>、ScarTrace<ref><pubmed>29590089</pubmed></ref> 、LINNAEUS<ref><pubmed>29644996</pubmed></ref>、あるいはアデノシンデアミナーゼでRNA編集を行いタイムスタンプを入れる方法<ref><pubmed>33077959</pubmed></ref>がある。[[1塩基バリアント]](Single-nucleotide variants: SNV)の系統的解析は、細胞の不均一性や系統的な関係を明らかにするための最も有望なアプローチの一つである<ref><pubmed>31744515</pubmed></ref>。
 実験的なノイズとは別に生物学的に意味のある遺伝子発現の変動には、位置情報、[[細胞周期]]、[[概日リズム]]、発現変動が大きい破裂型[[プロモーター]]の作動などの理由で 変動が見られるものもある<ref name=Luecken2019><pubmed>31217225</pubmed></ref><ref><pubmed> 26000846</pubmed></ref>。特に、刺激・薬剤処理やさまざまな病態の進行や治療に伴う細胞の変化、発生途上にある[[細胞系譜]]や[[細胞分化]]といった細胞の遷移状態の解析([[軌道推定]](Trajectory inference);[[擬時系列解析]](擬似時系列解析)、Pseudo-time analysis)には、scRNA-seqデータを用いることが効果的である<ref><pubmed>29576429</pubmed></ref><ref><pubmed>28813177</pubmed></ref><ref><pubmed>29565398</pubmed></ref>。しばしば用いられるMonocle3 <ref><pubmed>30787437</pubmed></ref>[https://cole-trapnell-lab.github.io/monocle3/]など、多くのコードを収集、比較しているサイトがある [https://dynverse.org][https://github.com/agitter/single-cell-pseudotime]。RNA velocityといったスプライシングされていく転写産物の量から細胞の分化状態を推定する方法もある<ref><pubmed>30089906</pubmed></ref><ref><pubmed> 32747759</pubmed></ref>。しかし、これらの方法は、あくまで細胞系譜や細胞分化の推定に過ぎない。細胞系譜を更に確実に観察しつつ、scRNA-seqを行うことで、細胞タイプの系統関係を調べる方法として、[[CRISPR-Cas9]]を用いた[[ゲノム編集]]による痕跡追跡記録法を導入したscGESTALT<ref><pubmed>29608178</pubmed></ref>、ScarTrace<ref><pubmed>29590089</pubmed></ref> 、LINNAEUS<ref><pubmed>29644996</pubmed></ref>、あるいはアデノシンデアミナーゼでRNA編集を行いタイムスタンプを入れる方法<ref><pubmed>33077959</pubmed></ref>がある。[[1塩基バリアント]](Single-nucleotide variants: SNV)の系統的解析は、細胞の不均一性や系統的な関係を明らかにするための最も有望なアプローチの一つである<ref><pubmed>31744515</pubmed></ref>。
105行目: 105行目:
 [[海馬]]<ref><pubmed>29241552</pubmed></ref><ref><pubmed>29912866</pubmed></ref><ref><pubmed>29335606</pubmed></ref><ref><pubmed>31942070</pubmed></ref>では、これまでの研究で記載されてきた神経細胞のタイプの存在が確認され、更に新規のタイプが見つかった。中枢神経系では、その他、[[外側膝状体]]<ref><pubmed>29343640</pubmed></ref>、[[大脳基底核]]<ref><pubmed>28384468</pubmed></ref>、[[視床下部]]<ref><pubmed>28166221</pubmed></ref><ref><pubmed>28355573</pubmed></ref>  <ref><pubmed>27991900</pubmed></ref><ref name=Moffitt2018><pubmed>30385464</pubmed></ref>  <ref><pubmed>31249056</pubmed></ref><ref><pubmed>30858605</pubmed></ref>、[[線条体]]<ref><pubmed>27425622</pubmed></ref><ref><pubmed>30134177</pubmed></ref><ref><pubmed>31875543</pubmed></ref>、[[中脳]]<ref><pubmed>27716510</pubmed></ref><ref><pubmed>29499164</pubmed></ref><ref><pubmed>30718509</pubmed></ref>、[[手綱核]]<ref><pubmed>29576475</pubmed></ref>、発生中の[[間脳]]<ref><pubmed>30872278</pubmed></ref> 、さらに[[小脳]]<ref><pubmed>30220501</pubmed></ref><ref><pubmed>30735127</pubmed></ref><ref><pubmed>30690467</pubmed></ref>などの結果が報告されてきている。例えば、構成する細胞についての情報が詳細に研究されてきたと思われていたマウスの小脳においても、分子層にこれまでの[[星状細胞]]、[[バスケット細胞]]というカテゴリーとは違った[[ギャップジャンクション]]に特徴を持つ2種類の神経細胞があることが示唆されている<ref><pubmed>24259518</pubmed></ref>。
 [[海馬]]<ref><pubmed>29241552</pubmed></ref><ref><pubmed>29912866</pubmed></ref><ref><pubmed>29335606</pubmed></ref><ref><pubmed>31942070</pubmed></ref>では、これまでの研究で記載されてきた神経細胞のタイプの存在が確認され、更に新規のタイプが見つかった。中枢神経系では、その他、[[外側膝状体]]<ref><pubmed>29343640</pubmed></ref>、[[大脳基底核]]<ref><pubmed>28384468</pubmed></ref>、[[視床下部]]<ref><pubmed>28166221</pubmed></ref><ref><pubmed>28355573</pubmed></ref>  <ref><pubmed>27991900</pubmed></ref><ref name=Moffitt2018><pubmed>30385464</pubmed></ref>  <ref><pubmed>31249056</pubmed></ref><ref><pubmed>30858605</pubmed></ref>、[[線条体]]<ref><pubmed>27425622</pubmed></ref><ref><pubmed>30134177</pubmed></ref><ref><pubmed>31875543</pubmed></ref>、[[中脳]]<ref><pubmed>27716510</pubmed></ref><ref><pubmed>29499164</pubmed></ref><ref><pubmed>30718509</pubmed></ref>、[[手綱核]]<ref><pubmed>29576475</pubmed></ref>、発生中の[[間脳]]<ref><pubmed>30872278</pubmed></ref> 、さらに[[小脳]]<ref><pubmed>30220501</pubmed></ref><ref><pubmed>30735127</pubmed></ref><ref><pubmed>30690467</pubmed></ref>などの結果が報告されてきている。例えば、構成する細胞についての情報が詳細に研究されてきたと思われていたマウスの小脳においても、分子層にこれまでの[[星状細胞]]、[[バスケット細胞]]というカテゴリーとは違った[[ギャップジャンクション]]に特徴を持つ2種類の神経細胞があることが示唆されている<ref><pubmed>24259518</pubmed></ref>。


 脳の外部では、[[運動神経]][https://doi.org/10.1101/2020.03.16.992958]、[[感覚神経]]<ref><pubmed>25420068</pubmed></ref><ref><pubmed>26691752</pubmed></ref>、[[らせん神経節]]<ref><pubmed>30078709</pubmed></ref><ref><pubmed>30209249</pubmed></ref> 、[[嗅覚神経]]<ref><pubmed>26541607</pubmed></ref><ref><pubmed>32059767</pubmed></ref>、[[腸神経系]] <ref><pubmed>29483303</pubmed></ref><ref><pubmed>33288908</pubmed></ref>、[[網膜]]<ref><pubmed>27565351</pubmed></ref><ref name=Konstantinides2018><pubmed>29909983</pubmed></ref><ref><pubmed>30018341</pubmed></ref><ref><pubmed>31260032</pubmed></ref><ref><pubmed>31128945</pubmed></ref><ref name=Peng2019><pubmed>30712875</pubmed></ref><ref><pubmed>30548510</pubmed></ref><ref><pubmed>31075224</pubmed></ref><ref><pubmed>31399471</pubmed></ref><ref><pubmed>31848347</pubmed></ref><ref><pubmed>31673015</pubmed></ref><ref><pubmed>31653841</pubmed></ref><ref><pubmed>31784286</pubmed></ref>[https://doi.org/10.1101/2020.02.26.966093]<ref><pubmed>32386599</pubmed></ref>[https://www.biorxiv.org/content/10.1101/617555v2][https://doi.org/10.7554/eLife.63907]<ref>'''Shekhar K, Sanes JR (2021)'''.<br>Generating and using transcriptomically based retinal cell atlases. Annu Rev Vis Sci 7: (in press)</ref>でのscRNA-seqデータがある。
 脳の外部では、[[運動神経]][https://doi.org/10.1101/2020.03.16.992958]、[[感覚神経]]<ref><pubmed>25420068</pubmed></ref><ref><pubmed>26691752</pubmed></ref>、[[らせん神経節]]<ref><pubmed>30078709</pubmed></ref><ref><pubmed>30209249</pubmed></ref> 、[[嗅覚神経]]<ref><pubmed>26541607</pubmed></ref><ref><pubmed>32059767</pubmed></ref>、[[腸神経系]] <ref><pubmed>29483303</pubmed></ref><ref><pubmed>33288908</pubmed></ref>、[[網膜]]<ref><pubmed>27565351</pubmed></ref><ref name=Konstantinides2018><pubmed>29909983</pubmed></ref><ref><pubmed>30018341</pubmed></ref><ref><pubmed>31260032</pubmed></ref><ref><pubmed>31128945</pubmed></ref><ref name=Peng2019><pubmed>30712875</pubmed></ref><ref><pubmed>30548510</pubmed></ref><ref><pubmed>31075224</pubmed></ref><ref><pubmed>31399471</pubmed></ref><ref><pubmed>31848347</pubmed></ref><ref><pubmed>31673015</pubmed></ref><ref><pubmed>31653841</pubmed></ref><ref><pubmed>31784286</pubmed></ref>[https://doi.org/10.1101/2020.02.26.966093]<ref><pubmed>32386599</pubmed></ref>[https://www.biorxiv.org/content/10.1101/617555v2]<ref><pubmed> 33393903</pubmed></ref><ref>'''Shekhar K, Sanes JR (2021)'''.<br>Generating and using transcriptomically based retinal cell atlases. Annu Rev Vis Sci 7: (in press)</ref>でのscRNA-seqデータがある。


 また[[iPS細胞]]や[[ES細胞]]由来の神経組織[[オルガノイド]]に含まれる神経細胞タイプを知る上でも利用されている<ref><pubmed>28094016</pubmed></ref><ref><pubmed>28279351</pubmed></ref><ref><pubmed>31168097</pubmed></ref><ref><pubmed>31996853</pubmed></ref><ref><pubmed>31968264</pubmed></ref><ref><pubmed>32221280</pubmed></ref>。このようなアプローチは、[[ネアンデルタール人]]型の遺伝子を持つ脳オルガノイドの解析<ref><pubmed> 32559457</pubmed></ref>やSARS-CoV-2に感染する脳オルガノイド中の細胞の同定<ref><pubmed> 33113348</pubmed></ref>など、新たな応用例が発表されてきており興味深い。
 また[[iPS細胞]]や[[ES細胞]]由来の神経組織[[オルガノイド]]に含まれる神経細胞タイプを知る上でも利用されている<ref><pubmed>28094016</pubmed></ref><ref><pubmed>28279351</pubmed></ref><ref><pubmed>31168097</pubmed></ref><ref><pubmed>31996853</pubmed></ref><ref><pubmed>31968264</pubmed></ref><ref><pubmed>32221280</pubmed></ref>。このようなアプローチは、[[ネアンデルタール人]]型の遺伝子を持つ脳オルガノイドの解析<ref><pubmed> 32559457</pubmed></ref>やSARS-CoV-2に感染する脳オルガノイド中の細胞の同定<ref><pubmed> 33113348</pubmed></ref>など、新たな応用例が発表されてきており興味深い。