「ドリフト拡散モデル」の版間の差分

編集の要約なし
編集の要約なし
編集の要約なし
72行目: 72行目:


==適用事例==
==適用事例==
[[Image:DDM_z_vs_v.png|thumb|<b>図3.図* 反応時間分布に及ぼすドリフト率 (左) 開始点パラメータ (右) の影響。</b>破線は参照となるベースのモデル (<math>v = 1.0, z = 0.5 </math>) を表す。実線はパラメータを変化させたときの結果を表し,左のパネルはドリフト率を大きくした場合 (<math>v = 2.0 </math>) ,右のパネルは開始点を高くした場合 (<math>z = 0.7 </math>) である。]]<br>
[[Image:DDM_z_vs_v.png|thumb|<b>図3.反応時間分布に及ぼすドリフト率 (左) 開始点パラメータ (右) の影響。</b>破線は参照となるベースのモデル (<math>v = 1.0, z = 0.5 </math>) を表す。実線はパラメータを変化させたときの結果を表し,左のパネルはドリフト率を大きくした場合 (<math>v = 2.0 </math>) ,右のパネルは開始点を高くした場合 (<math>z = 0.7 </math>) である。]]<br>


ドリフト拡散モデルを用いることで,反応分布の形状の情報を利用することが可能となり,単純な平均反応時間の解析では取りこぼされていた情報を利用して詳細なプロセスを検討することができる。例えば,開始点パラメータ<math>z</math>を増加させることと,ドリフト率<math>v</math>を増加させることはいずれも反応Aの選択確率を増加させ,その平均的な反応時間を短くする効果があるが,その反応時間分布の形状に与える影響が異なる。図Xの左では,開始点パラメータ<math>z</math>を固定し,ドリフト率を増加させた場合である (実線が増加後)。この場合,反応Aの確率が高くなり,速い反応時間の密度が増加するため平均反応時間は短くなるが,その分布のピーク (最も密度が高くなる地点) はほとんど変化しない。一方,開始点パラメータ<math>z</math>を<math>a</math>に近づけた場合 (図X右図) は,分布の形状が大きく変わり,反応Aの反応時間分布のピークが速い時間帯にシフトし,分布の歪みが大きくなる。
ドリフト拡散モデルを用いることで,反応分布の形状の情報を利用することが可能となり,単純な平均反応時間の解析では取りこぼされていた情報を利用して詳細なプロセスを検討することができる。例えば,開始点パラメータ<math>z</math>を増加させることと,ドリフト率<math>v</math>を増加させることはいずれも反応Aの選択確率を増加させ,その平均的な反応時間を短くする効果があるが,その反応時間分布の形状に与える影響が異なる。図Xの左では,開始点パラメータ<math>z</math>を固定し,ドリフト率を増加させた場合である (実線が増加後)。この場合,反応Aの確率が高くなり,速い反応時間の密度が増加するため平均反応時間は短くなるが,その分布のピーク (最も密度が高くなる地点) はほとんど変化しない。一方,開始点パラメータ<math>z</math>を<math>a</math>に近づけた場合 (図X右図) は,分布の形状が大きく変わり,反応Aの反応時間分布のピークが速い時間帯にシフトし,分布の歪みが大きくなる。


ヒトやその他の動物の意思決定には,現在の感覚入力や過去の選択の結果のみならず,過去の選択履歴が次の選択に影響することがよく知られている (Akaishi et al.)。同じ選択を繰り返す傾向は選択の慣性 (inertia) や固執性 (perseverance) と呼ばれている。そのような傾向はドリフト拡散モデルではエビデンスの蓄積の開始点にバイアスを与えるという解釈が可能である。しかし,実際の知覚的意思決定課題における選択データにおいては,過去の選択と同じ選択が選ばれる効果は,図X左のように比較的反応が遅い場合でも見られ,そのようなデータは開始点よりはむしろドリフト率が過去と同じ選択をする方向にバイアスがかかるとするモデルでよく説明されることが報告されている (Urai et al.)。この結果は,選択履歴の効果が,知覚的なエビデンスの蓄積過程に影響するということを明らかにしている。
ヒトやその他の動物の意思決定には,現在の感覚入力や過去の選択の結果のみならず,過去の選択履歴が次の選択に影響することがよく知られている (Akaishi et al.)。同じ選択を繰り返す傾向は選択の慣性 (inertia) や固執性 (perseverance) と呼ばれている。そのような傾向はドリフト拡散モデルではエビデンスの蓄積の開始点にバイアスを与えるという解釈が可能である。しかし,実際の知覚的意思決定課題における選択データにおいては,過去の選択と同じ選択が選ばれる効果は,図X左のように比較的反応が遅い場合でも見られ,そのようなデータは開始点よりはむしろドリフト率が過去と同じ選択をする方向にバイアスがかかるとするモデルでよく説明されることが報告されている (Urai et al.)。この結果は,選択履歴の効果が,知覚的なエビデンスの蓄積過程に影響するということを明らかにしている。
ドリフト拡散モデルのパラメータの推定値を利用して,選択に関するプロセスの個人差に影響する要因も検討されている。代表的な事例は加齢の効果であり,例えば高齢者は一般に多くの認知課題において反応が遅くなることが示されているが,ドリフト拡散モデルを適用して検討した研究では,高齢者は長い非決定時間,そして境界の間隔が大きいという特徴はあるものの,ドリフト率は若年者と比べても小さくはないということが報告されている (Ratcliff, Thapar , and McKoon, 2010)。
一方で,幼児では境界分離が大きく,非決定時間が長いことに加え,ドリフト率も比較的小さいことが示されている (Ratcliff, Love, Thompson, and Opfer, 2012)。また,注意欠如・多動症 (ADHD) や読字障害 (dyslexic) を有する若年者はそうでない統制群に比べ,ドリフト率が低い傾向があることを示した研究もある (Mulder et al.,2010, Zeguers et al., 2011)
一般知能 (IQ) との関係に関しては,高IQ群は低IQ群よりドリフト率が2倍程度高いという報告もある (Ratcliff et al., 2010; Ratcliff et al., 2011)。一方で,加齢による影響が見られた,境界分離や非決定時間にはIQとの関連は見られなかった。
==神経細胞の活動との対応==
 主にサルを対象とした単一細胞レベルでの神経活動記録により,エビデンスの蓄積過程に対応する神経活動が検討されてきた。例えば視線でターゲットを選択することで反応する意思決定課題においては,ターゲットの方向へのサッケード時に選択的に活動するLIP野 (lateral intraparietal cortex) の細胞は刺激の呈示とともに徐々に活動が増加し,ある閾値に到達したときにサッケード反応が起こるということが観測されている (Shadlen and Newsome, 1996),エビデンスの蓄積を表現する逐次サンプリングモデルで様子が観察されている。
==その他の逐次サンプリングモデル==
[[Image:逐次サンプリングモデルの図.png|thumb|<b>図4.逐次サンプリングモデルの種類</b>(Ratcliff et al.,2016を元に一部改変)]]<br>
逐次サンプリングモデルは,ドリフト拡散モデルだけではない。図**に示すように,逐次サンプリングモデルは,エビデンスの蓄積に関する基準が絶対的か相対的か,対象とする時間が連続的か離散的か,蓄積するエビデンスが連続的か離散的か,ドリフト率が固定か変化するかなどによって分類することができる。ドリフト拡散モデルは,逐次サンプリングモデルの代表的なモデルであるが,モデルの設定においては複数あるモデルの1つの形式であると言える(代表的な逐次サンプリングモデルのモデル間の差異については,Ratcliff & Smith(2004)を参照)。
[[Image:LBAの概要.png|thumb|<b>図5.線形弾道蓄積モデルにおける反応と反応時間の生成過程</b>]]<br>
ドリフト拡散モデル以外の代表的な逐次サンプリングモデルとして,線形弾道蓄積モデル(Brown & Heathcote, 2008)がある。図**にあるように,線形弾道蓄積モデルは,ドリフト拡散モデルと類似しているが,エビデンスの蓄積の基準が絶対的なことと確率的ではない点が異なる。ドリフト拡散モデルでは,反応はエビデンス蓄積が上の境界と下の境界のどちらに到達するかで決まる相対的なものであった。一方,線形弾道蓄積モデルでは,それぞれの反応は独立してエビデンスの蓄積を行って,最終的に先に閾値(b)に到達した反応が出力される(図***の場合,先にbに到達した反応Aが出力される)。エビデンスの蓄積が始まる点を開始点(a)と呼び,選択肢で同一のこともあるが,異なることもある。開始点の位置の違いは,エビデンスの蓄積の前に存在する選択肢に対するバイアスとして解釈される。ドリフト拡散モデルと同様にエビデンスの蓄積の速さはドリフト率(d)が決めるが,蓄積過程は線形かつ非確率的である。各試行のドリフト率(d)は,平均v,標準偏差sの正規分布に従い,各試行の開始点(a)は,0からA(開始点の上限)の一様分布に従う。決定時間は,(b-a)/dで求めることができ,非決定時間(τ)は,全試行で一定とする。aとdは,推定するパラメータではなく,v, b, A, s, τ が推定するパラメータになる。線形弾道蓄積モデルは,ドリフト拡散モデルよりも推定するパラメータが少なく,2選択肢以外の状況にも適用できるので,ドリフト拡散モデルと合わせて今後の活用が期待できる。
図*** 
==ドリフト拡散モデルの拡張 (強化学習モデルとの統合)==
 ドリフト拡散モデルは,個々の試行内で刺激呈示から反応出力 (選択) までのプロセスを表現するモデルであるが,試行間の選択の変化を表す他の数理モデルと組み合わせることもできる。例えば,報酬に基づく学習のプロセスを表現する代表的なモデルである強化学習モデルとドリフト拡散モデルを組み合わせたモデルが提案されている (Pederson et al., Frank et al.,)。一般の強化学習モデルでは,行動の結果与えられる報酬に基づいて各行動の価値を計算され,価値の高い行動が高い確率で選択される。この行動価値をドリフト拡散モデルのドリフト率に用いることで,選択肢の価値の差が小さいほど反応が競合し,反応時間が長くなるという仮定を置くことができる。そのように強化学習モデルを用いることでドリフト拡散モデルによる反応時間や選択の予測が改善できる。また,逆に反応時間をドリフト拡散モデルでモデル化することで,強化学習のパラメータの信頼性の改善も期待できる (Shahar et al.)。このように選択傾向の変化と反応時間を同時にモデル化して行動の背後にあるプロセスを探るというアプローチは,実験的に観測される情報をフルに活用できる枠組みとして今後の発展が期待される。


==参考文献==
==参考文献==
<references />
<references />
135

回編集