「ドリフト拡散モデル」の版間の差分

20行目: 20行目:


ドリフト拡散モデルは,刺激呈示から反応が起こるまでの経過時間(反応時間)と反応選択の分布を説明するモデルである。ドリフト拡散モデルは,Ratcliff  
ドリフト拡散モデルは,刺激呈示から反応が起こるまでの経過時間(反応時間)と反応選択の分布を説明するモデルである。ドリフト拡散モデルは,Ratcliff  
<ref name=Ratclif1978><b>Ratcliff, R.(1978).</b><br>A theory of memory retrieval.<br><i>Psychological Review</i> 1978, 85(2);59–108</ref>が提案し,心理学や神経科学における反応時間のモデリングにおいて,幅広く用いられている<ref><pubmed> 26952739 </pubmed></ref>。
<ref name=Ratclif1978><b>Ratcliff, R.(1978).</b><br>A theory of memory retrieval.<br><i>Psychological Review</i> 1978, 85(2);59–108</ref>により提案され,心理学や神経科学における反応時間のモデリングにおいて,幅広く用いられている<ref><pubmed> 26952739 </pubmed></ref>。


ドリフト拡散モデルが適用されるのは,刺激の呈示後から1秒から2秒程度の時間内に二種類の反応から一つを選択することが求められるようなタイプの意思決定である。熟考の末判断を下すような時間のかかる意思決定は適用対象ではないとされる。また,いずれかの反応が正解であり,もう片方の反応は不正解とされる場合が多いが,必ずしもその限りではない。適用される意思決定のタイプとしては,呈示された刺激が以前にも呈示されたものであるか新規なものであるかを判断する記憶課題<ref name=Ratclif1978 />,明るさや動きなどの刺激の物理的特徴について判断する知覚的判断<ref><pubmed> 12812276</pubmed></ref><ref><pubmed>15066392</pubmed></ref>の他,語彙判断<ref><pubmed>14756592</pubmed></ref>,数量的判断<ref><pubmed>24446719</pubmed></ref>,文章処理<ref><pubmed>20431690</pubmed></ref>,選好判断 (どちらの刺激が自身にとって好ましいか判断する)<ref><pubmed>20835253</pubmed></ref>,経済的意思決定<ref><pubmed></pubmed></ref>など多岐にわたる。
ドリフト拡散モデルが適用されるのは,刺激の呈示後から1秒から2秒程度の時間内に二種類の反応から一つを選択することが求められるようなタイプの意思決定である。熟考の末判断を下すような時間のかかる意思決定は適用対象ではないとされる。また,いずれかの反応が正解であり,もう片方の反応は不正解とされる場合が多いが,必ずしもその限りではない。適用される意思決定のタイプとしては,呈示された刺激が以前にも呈示されたものであるか新規なものであるかを判断する記憶課題<ref name=Ratclif1978 />,明るさや動きなどの刺激の物理的特徴について判断する知覚的判断<ref><pubmed> 12812276</pubmed></ref><ref><pubmed>15066392</pubmed></ref>,その他,語彙判断<ref><pubmed>14756592</pubmed></ref>,数量的判断<ref><pubmed>24446719</pubmed></ref>,文章処理<ref><pubmed>20431690</pubmed></ref>,選好判断<ref><pubmed>20835253</pubmed></ref>など多岐にわたる。


ドリフト拡散モデルは,逐次サンプリングモデル (sequential sampling model) の一種である。逐次サンプリングモデルでは,刺激が呈示されると生体は時間経過とともに確率的に情報を蓄積していき,その蓄積が境界を越えた時に反応が出力されると仮定する。図1に示すように,行動課題を実施した際に,反応までにかかる時間は,(1)刺激の読み込み,(2)エビデンス(判断を下すのに必要な情報)の蓄積,(3)反応 (ボタン押しなどの運動) に分解することができる。(1)刺激の読み込みと(3)反応は,判断に関わる過程ではないので,非決定時間 (non decision time) と呼ばれる。(2)エビデンスの蓄積は,決定時間 (decision time) と呼ばれる。ドリフト拡散モデルをはじめとする逐次サンプリングモデルを用いることで,非決定時間の推定と決定時間の生成に関わるパラメータの推定を行うことができる。
ドリフト拡散モデルは,逐次サンプリングモデル (sequential sampling model) の一種である。逐次サンプリングモデルでは,刺激が呈示されると生体は時間経過とともに確率的に情報を蓄積していき,その蓄積が境界を越えた時に反応が出力されると仮定する。図1に示すように,行動課題を実施した際に,反応までにかかる時間は,(1)刺激の読み込み,(2)エビデンス(判断を下すのに必要な情報)の蓄積,(3)反応 (ボタン押しなどの運動) に分解することができる。(1)刺激の読み込みと(3)反応は,判断に関わる過程ではないので,非決定時間 (non decision time) と呼ばれる。(2)エビデンスの蓄積は,決定時間 (decision time) と呼ばれる。ドリフト拡散モデルをはじめとする逐次サンプリングモデルを用いることで,非決定時間の推定と決定時間の生成に関わるパラメータの推定を行うことができる。
135

回編集