「アルゴノート」の版間の差分

編集の要約なし
 
(同じ利用者による、間の3版が非表示)
7行目: 7行目:
英語:argonaute
英語:argonaute


{{box|text= アルゴノートは、PAZドメインやPIWIドメインなど特徴的なドメインから成るタンパク質で、20-30塩基長の小分子RNA(ガイドRNA)を介して標的とする遺伝子の転写産物に結合しRNA誘導型サイレンシング複合体(RNA-induced silencing complex, RISC)を形成し、遺伝子の発現を抑制する。多くの生物はアルゴノートを複数持ち、発現する組織の違いによってAGOサブファミリーとPIWIサブファミリーに分類される。AGOサブファミリーは全ての組織で発現する一方、PIWIサブファミリーは生殖組織特異的に発現する。AGOサブファミリーと結合して機能する小分子RNAとしては、マイクロRNA(microRNA, miRNA)やsmall interfering RNA(siRNA)がある。PIWIサブファミリーに結合する小分子RNAは、PIWI-interacting RNA(piRNA)と称される。アルゴノートの機能は生体の恒常性維持に必須で、その機能欠損は、知的障害、がん、不妊などの原因となる。}}
{{box|text= アルゴノートは、PAZドメインやPIWIドメインなど特徴的なドメインから成るタンパク質である。20-30塩基長の小分子RNA(ガイドRNA)と共にRNA誘導型サイレンシング複合体(RNA-induced silencing complex, RISC)を形成し、標的とする遺伝子の転写産物に結合してその発現を抑制する。多くの生物はアルゴノートを複数持ち、発現する組織の違いによってAGOサブファミリーとPIWIサブファミリーに分類される。AGOサブファミリーは全ての組織で発現する一方、PIWIサブファミリーは生殖組織特異的に発現する。AGOサブファミリーと結合して機能する小分子RNAとしては、マイクロRNA(microRNA, miRNA)やsmall interfering RNA(siRNA)がある。PIWIサブファミリーに結合する小分子RNAは、PIWI-interacting RNA(piRNA)と称される。アルゴノートの機能は生体の恒常性維持に必須で、その機能欠損は、知的障害、がん、不妊などの原因となる。}}
==アルゴノートとは==
==アルゴノートとは==
[[ファイル:Shiomi Argonaute Fig1.png|サムネイル|'''図1. アルゴノートのドメイン構造'''<br>アルゴノートは、N、PAZ、 MID、PIWIの4つのドメインと、L1(Linker-1)、L2(Linker- 2)の2つのリンカーからなる。]]
[[ファイル:Shiomi Argonaute Fig1.png|サムネイル|'''図1. アルゴノートのドメイン構造'''<br>アルゴノートは、N、PAZ、 MID、PIWIの4つのドメインと、L1(Linker-1)、L2(Linker- 2)の2つのリンカーからなる。]]
14行目: 14行目:
 アルゴノートとは、[[PAZドメイン]]や[[PIWIドメイン]]など特徴的な[[ドメイン]]を持つ一群のタンパク質である('''図1''')。
 アルゴノートとは、[[PAZドメイン]]や[[PIWIドメイン]]など特徴的な[[ドメイン]]を持つ一群のタンパク質である('''図1''')。


 [[シロイヌナズナ]](''Arabidopsis thaliana'')の、ある変異体の表現型がアオイガイ(''Argonauta argo'')に似ていたことから、この遺伝子は[[アルゴノート1]]([[Argonaute 1]], [[AGO1]])と名付けられた<ref name=Bohmert1998><pubmed>9427751</pubmed></ref>。AGO1は植物に限らず多くの生物で保存されている('''表''')。AGO1は、[[マイクロRNA]]([[microRNA]], [[miRNA]])と特異的に結合し、[[RNA誘導型サイレンシング複合体]]([[RNA-induced silencing complex]], [[RISC]])を形成する<ref name=Kim2009><pubmed>19165215</pubmed></ref><ref name=Guo2010><pubmed>20703300</pubmed></ref><ref name=Bartel2018><pubmed>29570994</pubmed></ref> [2-4]。RISC内のmiRNAは、高い配列相補性を示す内在性の[[伝令RNA]]([[mRNA]])と対合することによってAGO1を標的mRNAに運び、mRNAの不安定化や[[翻訳]]阻害を促進することで、タンパク質合成を抑制する<ref name=Bartel2018><pubmed>29570994</pubmed></ref><ref name=Guo2010><pubmed>20703300</pubmed></ref><ref name=Kim2009><pubmed>19165215</pubmed></ref>('''図2''')。
 [[シロイヌナズナ]](''Arabidopsis thaliana'')の、ある変異体の表現型がアオイガイ(''Argonauta argo'')に似ていたことから、この遺伝子は[[アルゴノート1]]([[Argonaute 1]], [[AGO1]])と名付けられた<ref name=Bohmert1998><pubmed>9427751</pubmed></ref>。AGO1は植物に限らず多くの生物で保存されている('''表''')。AGO1は、[[マイクロRNA]]([[microRNA]], [[miRNA]])と特異的に結合し、[[RNA誘導型サイレンシング複合体]]([[RNA-induced silencing complex]], [[RISC]])を形成する<ref name=Kim2009><pubmed>19165215</pubmed></ref><ref name=Guo2010><pubmed>20703300</pubmed></ref><ref name=Bartel2018><pubmed>29570994</pubmed></ref>。RISC内のmiRNAは、高い配列相補性を示す内在性の[[伝令RNA]]([[mRNA]])と対合することによってAGO1を標的mRNAに運び、mRNAの不安定化や[[翻訳]]阻害を促進することで、タンパク質合成を抑制する<ref name=Bartel2018><pubmed>29570994</pubmed></ref><ref name=Guo2010><pubmed>20703300</pubmed></ref><ref name=Kim2009><pubmed>19165215</pubmed></ref>('''図2''')。


 [[ショウジョウバエ]]の[[RNA干渉]]([[RNA interference]], [[RNAi]])の中核因子として同定されたアルゴノートは、ショウジョウバエのAGO1や[[線虫]](''Caenorhabditis elegans'')の[[RDE1]](AGO1ホモログ)と高い相同性を示したことから、[[アルゴノート2]]([[AGO2]])と名付けられた<ref name=Hammond2001><pubmed>11498593</pubmed></ref>。AGO2は、RNA干渉において機能する小分子RNAである[[small interfering RNA]]([[siRNA]])とRISCを形成する<ref name=Liu2004><pubmed>15284456</pubmed></ref><ref name=Meister2004><pubmed>15260970</pubmed></ref><ref name=Miyoshi2005><pubmed>16287716</pubmed></ref>('''図2''')。RISC内のsiRNAは、高い配列相補性を示すRNAと対合することによってAGO2を標的RNA(mRNAに限らない)に運び、それを切断することで遺伝子発現や機能を抑制する<ref name=Liu2004><pubmed>15284456</pubmed></ref><ref name=Meister2004><pubmed>15260970</pubmed></ref><ref name=Miyoshi2005><pubmed>16287716</pubmed></ref>。
 [[ショウジョウバエ]]の[[RNA干渉]]([[RNA interference]], [[RNAi]])の中核因子として同定されたアルゴノートは、ショウジョウバエのAGO1や[[線虫]](''Caenorhabditis elegans'')の[[RDE1]](AGO1ホモログ)と高い相同性を示したことから、[[アルゴノート2]]([[AGO2]])と名付けられた<ref name=Hammond2001><pubmed>11498593</pubmed></ref>。AGO2は、RNA干渉において機能する小分子RNAである[[small interfering RNA]]([[siRNA]])とRISCを形成する<ref name=Liu2004><pubmed>15284456</pubmed></ref><ref name=Meister2004><pubmed>15260970</pubmed></ref><ref name=Miyoshi2005><pubmed>16287716</pubmed></ref>('''図2''')。RISC内のsiRNAは、高い配列相補性を示すRNAと対合することによってAGO2を標的RNA(mRNAに限らない)に運び、それを切断することで遺伝子発現や機能を抑制する<ref name=Liu2004><pubmed>15284456</pubmed></ref><ref name=Meister2004><pubmed>15260970</pubmed></ref><ref name=Miyoshi2005><pubmed>16287716</pubmed></ref>。
42行目: 42行目:
 全てのアルゴノートは、N、PAZ、MID、PIWIという4つの主要ドメインと、2つのリンカー(Linker-1とLinker-2)を持つ<ref name=Hutvagner2008><pubmed>18073770</pubmed></ref><ref name=Nakanishi2022><pubmed>35736234</pubmed></ref>('''図1''')。
 全てのアルゴノートは、N、PAZ、MID、PIWIという4つの主要ドメインと、2つのリンカー(Linker-1とLinker-2)を持つ<ref name=Hutvagner2008><pubmed>18073770</pubmed></ref><ref name=Nakanishi2022><pubmed>35736234</pubmed></ref>('''図1''')。


 NドメインはRISC形成に寄与する。PAZドメインはガイド(小分子)RNAの3’末端に、MIDドメインは5’末端に結合する。PIWIドメインは[[RNaseH]]様構造をとっており、アルゴノートが標的RNAを切断するための[[エンドヌクレアーゼ]]活性(スライサー活性ともいう)を担う<ref name=Nakanishi2022><pubmed>35736234</pubmed></ref><ref name=Song2004><pubmed>15284453</pubmed></ref>。その活性中心に相当する[[アスパラギン酸]]-[[グルタミン酸]]-アスパラギン酸-[[ヒスチジン]](Asp-Glu-Asp-His)の4つのアミノ酸を変異させると、RNA切断活性を示さなくなる。但し、ヒトのAGO3はこの4つのアミノ酸を持つにもかかわらず、エンドヌクレアーゼ活性を示さない。
 NドメインはRISC形成に寄与する。PAZドメインはガイド(小分子)RNAの3’末端に、MIDドメインは5’末端に結合する。PIWIドメインは[[RNaseH]]様構造をとっており、アルゴノートが標的RNAを切断するための[[エンドヌクレアーゼ]]活性(スライサー活性ともいう)を担う<ref name=Nakanishi2022><pubmed>35736234</pubmed></ref><ref name=Song2004><pubmed>15284453</pubmed></ref>。その活性中心のアミノ酸は、[[アスパラギン酸]]-[[グルタミン酸]]-アスパラギン酸-[[ヒスチジン]](Asp-Glu-Asp-His)である。


 最初に立体構造が解明されたアルゴノートは、[[超高熱古細菌]](''Pyrococcus furiosus'')のAGOである<ref name=Song2004><pubmed>15284453</pubmed></ref>。ヒトの4種類全てのAGOと、ショウジョウバエPiwi、[[カイコ]](''Bombyx mori'')Piwiホモログ(Siwi)の立体構造も既に解かれている<ref name=Matsumoto2016><pubmed>27693359</pubmed></ref><ref name=Nakanishi2022><pubmed>35736234</pubmed></ref><ref name=Yamaguchi2020><pubmed>31913276</pubmed></ref>。
 最初に立体構造が解明されたアルゴノートは、[[超高熱古細菌]](''Pyrococcus furiosus'')のAGOである<ref name=Song2004><pubmed>15284453</pubmed></ref>。ヒトの4種類全てのAGOと、ショウジョウバエPiwi、[[カイコ]](''Bombyx mori'')Piwiホモログ(Siwi)の立体構造も既に解かれている<ref name=Matsumoto2016><pubmed>27693359</pubmed></ref><ref name=Nakanishi2022><pubmed>35736234</pubmed></ref><ref name=Yamaguchi2020><pubmed>31913276</pubmed></ref>。
93行目: 93行目:


== ヒト疾患との関わり ==
== ヒト疾患との関わり ==
 ヒトの4種類のAGOと結合するmiRNAは高い割合で重複するため、AGOサブファミリー間の機能に重複があると推察された<ref name=Hafner2010><pubmed>20371350</pubmed></ref>。しかし、例えばAGO3の機能喪失は、[[知的障害]]を発症することが報告されており、AGOサブファミリー間の機能的代償は部分的であるといえる。ヒトのAGO1およびAGO3遺伝子を含むゲノム領域の欠失は、神経[[認知障害]]、[[発達遅延]]、知的障害、[[骨年齢]]遅延等に関与する可能性が示唆されている<ref name=Tokita2015><pubmed>25271087</pubmed></ref>。また、ヒトのAGO1遺伝子の変異は、[[自閉症スペクトラム障害]]や知的障害に関連することが示唆されている<ref name=Schalk2022><pubmed>34930816</pubmed></ref>。miRNAの機能と、[[がん]]などの疾患との相関に関しては多くの報告がある<ref name=Iorio2012><pubmed>22351564</pubmed></ref>。PIWIとpiRNAの機能欠損は[[不妊症]]を導く<ref name=Wang2022><pubmed>35403682</pubmed></ref>f。
 ヒトの4種類のAGOと結合するmiRNAは高い割合で重複するため、AGOサブファミリー間の機能に重複があると推察された<ref name=Hafner2010><pubmed>20371350</pubmed></ref>。しかし、例えばAGO3の機能喪失は、[[知的障害]]を発症することが報告されており、AGOサブファミリー間の機能的代償は部分的であるといえる。ヒトのAGO1およびAGO3遺伝子を含むゲノム領域の欠失は、神経[[認知障害]]、[[発達遅延]]、知的障害、[[骨年齢]]遅延等に関与する可能性が示唆されている<ref name=Tokita2015><pubmed>25271087</pubmed></ref>。また、ヒトのAGO1遺伝子の変異は、[[自閉症スペクトラム障害]]や知的障害に関連することが示唆されている<ref name=Schalk2022><pubmed>34930816</pubmed></ref>。miRNAの機能と、[[がん]]などの疾患との相関に関しては多くの報告がある<ref name=Iorio2012><pubmed>22351564</pubmed></ref>。PIWIとpiRNAの機能欠損は[[不妊症]]を導く<ref name=Wang2022><pubmed>35403682</pubmed></ref>


== 関連用語 ==
== 関連用語 ==