「長期増強」の版間の差分

編集の要約なし
編集の要約なし
2行目: 2行目:
<font size="+1">[https://researchmap.jp/k-shi-tky73 小林 静香]、[https://researchmap.jp/toshiyamanabe 真鍋 俊也]</font><br>
<font size="+1">[https://researchmap.jp/k-shi-tky73 小林 静香]、[https://researchmap.jp/toshiyamanabe 真鍋 俊也]</font><br>
''東京大学 医科学研究所 神経ネットワーク分野''<br>
''東京大学 医科学研究所 神経ネットワーク分野''<br>
DOI:<selfdoi /> 原稿受付日:2024年1月26日 原稿完成日:202X年X月XX日<br>
DOI:<selfdoi /> 原稿受付日:2024年1月26日 原稿完成日:202X年X月XX日<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](京都大学大学院医学研究科 システム神経薬理学分野)<br>
担当編集委員:[http://researchmap.jp/2rikenbsi 林 康紀](京都大学大学院医学研究科 システム神経薬理学分野)<br>
</div>
</div>
長期増強 (Long-term potentiation: LTP)
長期増強 (Long-term potentiation: LTP)


{{box|text= }}
{{box|text= }}


== 長期増強とは ==
== 長期増強とは ==
 シナプスの伝達効率は神経の活動履歴に応じて柔軟に変化することが知られている。このような変化をシナプス可塑性 (synaptic plasticity) と呼び、代表的なものに長期増強(long-term potentiation: LTP)や長期抑圧(long-term depression: LTD)がある。一般的に、シナプス伝達効率の増強が1時間以上持続する場合をLTPと呼び、それよりも短い場合は短期増強(short-term potentiation: STP)と呼ばれることが多い。LTPは、数時間から、場合によっては数カ月も持続する現象であるが、時間経過に沿って、タンパク合成を伴わない前期LTP(early-LTP: E-LTP)と、タンパク合成をともなう後期 LTP (Late-LTP: L-LTP)とに区分する場合もある。
 シナプスの伝達効率は神経の活動履歴に応じて柔軟に変化することが知られている。このような変化をシナプス可塑性 (synaptic plasticity) と呼び、代表的なものに長期増強(long-term potentiation: LTP)や長期抑圧(long-term depression: LTD)がある。一般的に、シナプス伝達効率の増強が1時間以上持続する場合をLTPと呼び、それよりも短い場合は短期増強(short-term potentiation: STP)と呼ばれることが多い。LTPは、数時間から、場合によっては数カ月も持続する現象であるが、時間経過に沿って、タンパク合成を伴わない前期LTP(early-LTP: E-LTP)と、タンパク合成をともなう後期 LTP (Late-LTP: L-LTP)とに区分する場合もある。


 LTPは様々な脳領域において観察される現象であるが、特に陳述記憶の中枢である海馬において、他の領域と比較してより容易に誘導されること、また後述するLTPの基本的特性(共同性、入力特異性、連合性)が記憶のもつ特性と類似性を持つこと、さらにLTPが長い持続性を示す現象であることから、学習や記憶形成の細胞レベルでの基礎過程であると考えられてきた。一般的に、LTPがおきる機序は、誘導(induction)と発現(expression)の2つのステップにわけることができるとされ、それぞれのステップを担う分子機序の解明が盛んに試みられている。維持 (maintenance)という用語が使用されることがあるが、これはシナプス伝達を変化させるための生化学過程の変化が持続している状態そのものを指す場合が多い。
 LTPは様々な脳領域において観察される現象であるが、特に陳述記憶の中枢である海馬において、他の領域と比較してより容易に誘導されること、また後述するLTPの基本的特性(共同性、入力特異性、連合性)が記憶のもつ特性と類似性を持つこと、さらにLTPが長い持続性を示す現象であることから、学習や記憶形成の細胞レベルでの基礎過程であると考えられてきた。一般的に、LTPがおきる機序は、誘導(induction)と発現(expression)の2つのステップにわけることができるとされ、それぞれのステップを担う分子機序の解明が盛んに試みられている。維持 (maintenance)という用語が使用されることがあるが、これはシナプス伝達を変化させるための生化学過程の変化が持続している状態そのものを指す場合が多い。


 1966年の北欧での学会で、Lømoにより海馬歯状回でのシナプス伝達効率が高頻度刺激により長時間にわたって増強される現象、すなわちLTPの存在、が初めて報告された<ref name=Lømo1966>'''Lømo, T. (1966).'''<br>Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal formation. Acta Physiol. Scand. 68 (Suppl. 277): 128</ref>(1)。これを体系的にまとめたのがBlissとLømoによる1973年の論文である<ref name=Bliss1973a><pubmed>4727084</pubmed></ref>(2)。これらの研究では、麻酔下のウサギ海馬歯状回からガラス管微小電極を用いて興奮性シナプス応答を記録し、歯状回への入力線維である貫通線維(perforant path)を高頻度で刺激することによってLTPが誘導されることが示されたが、より生理的条件に近い無麻酔のウサギにおいても同様の現象が誘導できることも同時に報告された<ref name=Bliss1973b><pubmed>4727085</pubmed></ref>(3)。さらに、LTPが記憶形成を十分説明しうるだけの持続時間を示すことなどから、記憶・学習との関連性が指摘され、その発生機序を明らかにする研究がその後展開されることになった。
 1966年の北欧での学会で、Lømoにより海馬歯状回でのシナプス伝達効率が高頻度刺激により長時間にわたって増強される現象、すなわちLTPの存在、が初めて報告された<ref name=Lømo1966>'''Lømo, T. (1966).'''<br>Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal formation. Acta Physiol. Scand. 68 (Suppl. 277): 128</ref>(1)。これを体系的にまとめたのがBlissとLømoによる1973年の論文である<ref name=Bliss1973a><pubmed>4727084</pubmed></ref>(2)。これらの研究では、麻酔下のウサギ海馬歯状回からガラス管微小電極を用いて興奮性シナプス応答を記録し、歯状回への入力線維である貫通線維(perforant path)を高頻度で刺激することによってLTPが誘導されることが示されたが、より生理的条件に近い無麻酔のウサギにおいても同様の現象が誘導できることも同時に報告された<ref name=Bliss1973b><pubmed>4727085</pubmed></ref>(3)。さらに、LTPが記憶形成を十分説明しうるだけの持続時間を示すことなどから、記憶・学習との関連性が指摘され、その発生機序を明らかにする研究がその後展開されることになった。


== 特性 ==
== 特性 ==
 主に海馬CA1シナプスを対象とした研究から、LTPは以下の3つの特性を示すことが明らかになっている<ref name=Levy1979><pubmed>487154</pubmed></ref><ref name=McNaughton1978><pubmed>719524</pubmed></ref>(4、5)。
 主に海馬CA1シナプスを対象とした研究から、LTPは以下の3つの特性を示すことが明らかになっている<ref name=Levy1979><pubmed>487154</pubmed></ref><ref name=McNaughton1978><pubmed>719524</pubmed></ref>(4、5)。


# 協同性(cooperativity):LTPが誘導されるためには、ある一定数以上の入力線維が同時に活性化されなければならない。
# 協同性(cooperativity):LTPが誘導されるためには、ある一定数以上の入力線維が同時に活性化されなければならない。
# 入力特異性(input-specificity):同一の細胞に複数の入力がある場合、刺激を受けた線維が形成するシナプスのみでLTPが誘導される。
# 入力特異性(input-specificity):同一の細胞に複数の入力がある場合、刺激を受けた線維が形成するシナプスのみでLTPが誘導される。
# 連合性(associativity):LTPがおこらない程度の弱い高頻度刺激であっても、同時に別の強い入力が高頻度で加わった場合にはLTPが誘導されうる。
# 連合性(associativity):LTPがおこらない程度の弱い高頻度刺激であっても、同時に別の強い入力が高頻度で加わった場合にはLTPが誘導されうる。


 こうした特性を示すことから、LTPはヘブによって提唱された学習理論<ref name=Hebb1949>'''Hebb, D. O. (1949).'''<br>The Organization of Behavior:  A Neuropsychological Theory. New York, Wiley & Sons</pubmed></ref> (6)、すなわち、「記憶や学習が成立する際のシナプス強度の変化は、シナプス前細胞とシナプス後細胞とが同時に活性化された場合に引き起こされる」に相当する現象であるとみなされ、このようなタイプの可塑性を示すシナプスはヘブ型シナプス(Hebbian synapse)、また誘導されるLTPはヘブ型LTP(Hebbian LTP)と呼ばれている。
 こうした特性を示すことから、LTPはヘブによって提唱された学習理論<ref name=Hebb1949>'''Hebb, D. O. (1949).'''<br>The Organization of Behavior:  A Neuropsychological Theory. New York, Wiley & Sons</pubmed></ref> (6)、すなわち、「記憶や学習が成立する際のシナプス強度の変化は、シナプス前細胞とシナプス後細胞とが同時に活性化された場合に引き起こされる」に相当する現象であるとみなされ、このようなタイプの可塑性を示すシナプスはヘブ型シナプス(Hebbian synapse)、また誘導されるLTPはヘブ型LTP(Hebbian LTP)と呼ばれている。


== 機序 ==
== 機序 ==
===誘導:ヘブ型シナプスの場合 ===
===誘導:ヘブ型シナプスの場合 ===
 LTPがおきるにあたり、テタヌス刺激(tetanic stimulation)等によってシナプスに最初に引き起こされる変化の過程を誘導 (induction)と呼ぶ。以下の一連の研究から、海馬シャッファー側枝-CA1シナプスに代表されるヘブ型シナプスでのLTPの誘導には、①シナプス前部の活性化と、それに伴う②シナプス後細胞の脱分極、の2つが最低限必要であることがわかっている。
 LTPがおきるにあたり、テタヌス刺激(tetanic stimulation)等によってシナプスに最初に引き起こされる変化の過程を誘導 (induction)と呼ぶ。以下の一連の研究から、海馬シャッファー側枝-CA1シナプスに代表されるヘブ型シナプスでのLTPの誘導には、①シナプス前部の活性化と、それに伴う②シナプス後細胞の脱分極、の2つが最低限必要であることがわかっている。
* シナプス後細胞に脱分極電流を注入すると、強いテタヌス刺激を加えたのと同様のLTP誘導効果を得ることができる<ref name=Gustafsson1987><pubmed>2881989</pubmed></ref><ref name=Kelso1986><pubmed>3460096</pubmed></ref>(7、8)。
* シナプス後細胞に脱分極電流を注入すると、強いテタヌス刺激を加えたのと同様のLTP誘導効果を得ることができる<ref name=Gustafsson1987><pubmed>2881989</pubmed></ref><ref name=Kelso1986><pubmed>3460096</pubmed></ref>(7、8)。
* シナプス後細胞を脱分極させただけでは不十分で、同時にシナプス入力がなければLTPは誘導されない<ref name=Malenka1989><pubmed>2479146</pubmed></ref>(9)。
* シナプス後細胞を脱分極させただけでは不十分で、同時にシナプス入力がなければLTPは誘導されない<ref name=Malenka1989><pubmed>2479146</pubmed></ref>(9)。
* テタヌス刺激時にシナプス後細胞を過分極させるか、あるいは電位固定により脱分極を起こさないようにするとLTPが阻害される<ref name=Kelso1986><pubmed>3460096</pubmed></ref><ref name=Malinow1986><pubmed>3008000</pubmed></ref>(8、10)
* テタヌス刺激時にシナプス後細胞を過分極させるか、あるいは電位固定により脱分極を起こさないようにするとLTPが阻害される<ref name=Kelso1986><pubmed>3460096</pubmed></ref><ref name=Malinow1986><pubmed>3008000</pubmed></ref>(8、10)


 通常の興奮性シナプス伝達は、AMPA型グルタミン酸受容体により担われているが(図1A)、NMDA型グルタミン酸受容体の選択的アンタゴニストであるD-APV存在下ではLTPが誘導されないこと<ref name=Collingridge1983><pubmed>6306230</pubmed></ref>(11)や、細胞内のカルシウムイオンをキレートすることによってLTPが阻害される<ref name=Lynch1983><pubmed>6415483</pubmed></ref>(12)といった一連の研究から、膜の脱分極によってNMDA型グルタミン酸受容体のマグネシウムブロックが外れ、開口した受容体を介して細胞内へとカルシウムイオンの流入がおきる<ref name=Ascher1988><pubmed>2457089</pubmed></ref><ref name=MacDermott1986><pubmed>3012362</pubmed></ref> (13、14)ことがLTP誘導に必須であることがあきらかになっている(図1B)。
 通常の興奮性シナプス伝達は、AMPA型グルタミン酸受容体により担われているが(図1A)、NMDA型グルタミン酸受容体の選択的アンタゴニストであるD-APV存在下ではLTPが誘導されないこと<ref name=Collingridge1983><pubmed>6306230</pubmed></ref>(11)や、細胞内のカルシウムイオンをキレートすることによってLTPが阻害される<ref name=Lynch1983><pubmed>6415483</pubmed></ref>(12)といった一連の研究から、膜の脱分極によってNMDA型グルタミン酸受容体のマグネシウムブロックが外れ、開口した受容体を介して細胞内へとカルシウムイオンの流入がおきる<ref name=Ascher1988><pubmed>2457089</pubmed></ref><ref name=MacDermott1986><pubmed>3012362</pubmed></ref> (13、14)ことがLTP誘導に必須であることがあきらかになっている(図1B)。


=== 発現部位をめぐる論争 -シナプス前性か?シナプス後性か? ===
=== 発現部位をめぐる論争 -シナプス前性か?シナプス後性か? ===
43行目: 43行目:


== シナプス後性LTP ==
== シナプス後性LTP ==
 シナプス前終末から放出された神経伝達物質に対するシナプス後細胞の感受性の増大が長期間持続する現象を指す。最も代表的なシナプス後性のLTPは、海馬CA1領域の興奮性シナプス伝達のLTPで、実験的には、100Hz程度の高頻度のシナプス前線維の電気刺激により誘導される(図2A)。
 シナプス前終末から放出された神経伝達物質に対するシナプス後細胞の感受性の増大が長期間持続する現象を指す。最も代表的なシナプス後性のLTPは、海馬CA1領域の興奮性シナプス伝達のLTPで、実験的には、100Hz程度の高頻度のシナプス前線維の電気刺激により誘導される(図2A)。


 このシナプスでの神経伝達物質は、興奮性アミノ酸であるグルタミン酸で、LTPの誘導と発現には2種類のグルタミン酸受容体が関与している。通常のシナプス伝達はAMPA型受容体により媒介されており、NMDA型受容体は細胞外のマグネシウムブロックの存在により、機能していない(図1A)。刺激によりシナプス後細胞が強く脱分極すると、NMDA型受容体のマグネシウムブロックが外れ、ナトリウムイオンやカリウムイオンの移動とともに、カルシウムイオンの流入が引き起こされLTPが誘導される(図1B)。
 このシナプスでの神経伝達物質は、興奮性アミノ酸であるグルタミン酸で、LTPの誘導と発現には2種類のグルタミン酸受容体が関与している。通常のシナプス伝達はAMPA型受容体により媒介されており、NMDA型受容体は細胞外のマグネシウムブロックの存在により、機能していない(図1A)。刺激によりシナプス後細胞が強く脱分極すると、NMDA型受容体のマグネシウムブロックが外れ、ナトリウムイオンやカリウムイオンの移動とともに、カルシウムイオンの流入が引き起こされLTPが誘導される(図1B)。


 誘導刺激後、シナプス後肥厚部(postsynaptic density: PSD)にAMPA型受容体が集積することでシナプス応答の増強がおきると考えられている。これは、AMPA型受容体をGFPで蛍光ラベルして可視化する手法<ref name=Bosch2014><pubmed>24742465</pubmed></ref><ref name=Shi1999><pubmed>10364548</pubmed></ref>(28、29)や、GluA1-ホモメリック受容体(通常発現しているGluA2含有AMPA型受容体とは電流―電圧関係が異なり整流性を示すために、内在性のAMPA型受容体と電気生理学的に区別することができる)を海馬ニューロンに過剰発現させ、この外来性AMPA型受容体がLTP誘導後に実際にPSDへと移行していることを確かめることによって明らかにされた<ref name=Hayashi2000><pubmed>10731148</pubmed></ref>(30)。PSDへと集積するAMPA型受容体は、細胞内のプールからエクソサイトーシスによって活動依存的にPSDへと発現する(図2B:左)場合のほか<ref name=Kennedy2011><pubmed>21382547</pubmed></ref><ref name=Makino2009><pubmed>19914186</pubmed></ref><ref name=Patterson2010><pubmed>20733080</pubmed></ref>(31、32、33)、シナプス外(extrasynaptic site)に発現しているAMPA型受容体が側方拡散(lateral diffusion)によってPSDへと移行するという説(図2B:右)などが唱えられている<ref name=Choquet2003><pubmed>12671642</pubmed></ref><ref name=Opazo2012><pubmed>22051694</pubmed></ref>(34、35)。
 誘導刺激後、シナプス後肥厚部(postsynaptic density: PSD)にAMPA型受容体が集積することでシナプス応答の増強がおきると考えられている。これは、AMPA型受容体をGFPで蛍光ラベルして可視化する手法<ref name=Bosch2014><pubmed>24742465</pubmed></ref><ref name=Shi1999><pubmed>10364548</pubmed></ref>(28、29)や、GluA1-ホモメリック受容体(通常発現しているGluA2含有AMPA型受容体とは電流―電圧関係が異なり整流性を示すために、内在性のAMPA型受容体と電気生理学的に区別することができる)を海馬ニューロンに過剰発現させ、この外来性AMPA型受容体がLTP誘導後に実際にPSDへと移行していることを確かめることによって明らかにされた<ref name=Hayashi2000><pubmed>10731148</pubmed></ref>(30)。PSDへと集積するAMPA型受容体は、細胞内のプールからエクソサイトーシスによって活動依存的にPSDへと発現する(図2B:左)場合のほか<ref name=Kennedy2011><pubmed>21382547</pubmed></ref><ref name=Makino2009><pubmed>19914186</pubmed></ref><ref name=Patterson2010><pubmed>20733080</pubmed></ref>(31、32、33)、シナプス外(extrasynaptic site)に発現しているAMPA型受容体が側方拡散(lateral diffusion)によってPSDへと移行するという説(図2B:右)などが唱えられている<ref name=Choquet2003><pubmed>12671642</pubmed></ref><ref name=Opazo2012><pubmed>22051694</pubmed></ref>(34、35)。


 細胞内へと流入したカルシウムイオンは、さまざまなシグナル伝達系を活性化することが知られているが、中でもLTPと密接に関連していると考えられているのが、カルシウム-カルモデュリン依存性キナーゼII(calcium-calmodulin-dependent kinase II: CaMKII)である<ref name=Lisman2012><pubmed>22334212</pubmed></ref>(36)。CaMKIIの基質にはAMPA型受容体も含まれており、CaMKIIによるAMPA型受容体のリン酸化がPSDへの受容体の移行を制御しているといった報告<ref name=Henley2016><pubmed>27080385</pubmed></ref><ref name=Huganir2013><pubmed>24183021</pubmed></ref>(37、38)や、AMPA型受容体のリン酸化により受容体の単一チャネルコンダクタンス(single-channel conductance)が上昇する(図2C)という報告もあるが<ref name=Benke1998><pubmed>9655394</pubmed></ref><ref name=Derkach1999><pubmed>10077673</pubmed></ref>(39、40)、CaMKIIには他にも数百に及ぶ基質が知られており<ref name=Hornbeck2015><pubmed>25514926 [https://www.phosphosite.org/ [URL<nowiki>]</nowiki>]</pubmed></ref>(41)、いずれの基質がLTPに重要であるのかは現在も検討が続いている状況である<ref name=Hayashi2022><pubmed>34375719</pubmed></ref>(42)。またCaMKIIは他のリン酸化酵素と異なり、シナプスでの発現量が非常に多く、その量はアクチンなどの細胞骨格に匹敵するほどであることに加え<ref name=Erondu1985><pubmed>4078628</pubmed></ref>(43)、12量体構造をとるといった特徴を持つことから<ref name=Hoelz2003><pubmed>12769848</pubmed></ref>(44)、単にリン酸化酵素として機能するにとどまらず、構造タンパクとしての側面がLTP制御の上で重要な役割を果たしている可能性も近年指摘されている<ref name=Hayashi2022><pubmed>34375719</pubmed></ref><ref name=Nicoll2023><pubmed>37290118</pubmed></ref>(42、45)。
 細胞内へと流入したカルシウムイオンは、さまざまなシグナル伝達系を活性化することが知られているが、中でもLTPと密接に関連していると考えられているのが、カルシウム-カルモデュリン依存性キナーゼII(calcium-calmodulin-dependent kinase II: CaMKII)である<ref name=Lisman2012><pubmed>22334212</pubmed></ref>(36)。CaMKIIの基質にはAMPA型受容体も含まれており、CaMKIIによるAMPA型受容体のリン酸化がPSDへの受容体の移行を制御しているといった報告<ref name=Henley2016><pubmed>27080385</pubmed></ref><ref name=Huganir2013><pubmed>24183021</pubmed></ref>(37、38)や、AMPA型受容体のリン酸化により受容体の単一チャネルコンダクタンス(single-channel conductance)が上昇する(図2C)という報告もあるが<ref name=Benke1998><pubmed>9655394</pubmed></ref><ref name=Derkach1999><pubmed>10077673</pubmed></ref>(39、40)、CaMKIIには他にも数百に及ぶ基質が知られており<ref name=Hornbeck2015><pubmed>25514926 [https://www.phosphosite.org/ [URL<nowiki>]</nowiki>]</pubmed></ref>(41)、いずれの基質がLTPに重要であるのかは現在も検討が続いている状況である<ref name=Hayashi2022><pubmed>34375719</pubmed></ref>(42)。またCaMKIIは他のリン酸化酵素と異なり、シナプスでの発現量が非常に多く、その量はアクチンなどの細胞骨格に匹敵するほどであることに加え<ref name=Erondu1985><pubmed>4078628</pubmed></ref>(43)、12量体構造をとるといった特徴を持つことから<ref name=Hoelz2003><pubmed>12769848</pubmed></ref>(44)、単にリン酸化酵素として機能するにとどまらず、構造タンパクとしての側面がLTP制御の上で重要な役割を果たしている可能性も近年指摘されている<ref name=Hayashi2022><pubmed>34375719</pubmed></ref><ref name=Nicoll2023><pubmed>37290118</pubmed></ref>(42、45)。
54行目: 54行目:
 シナプス前終末からの神経伝達物質の放出が長期間にわたり増加する現象を指す。原理的には、ひとつのシナプス小胞内に含まれる神経伝達物質の量が増えることでもLTPが発現し得るが、ほとんどの場合は、シナプス小胞からの神経伝達物質の放出確率が長期的に増加することにより発現する。
 シナプス前終末からの神経伝達物質の放出が長期間にわたり増加する現象を指す。原理的には、ひとつのシナプス小胞内に含まれる神経伝達物質の量が増えることでもLTPが発現し得るが、ほとんどの場合は、シナプス小胞からの神経伝達物質の放出確率が長期的に増加することにより発現する。


 シナプス前性LTPの代表は、海馬CA3領域苔状線維 (mossy fiber) シナプスでのLTPである<ref name=Nicoll2005><pubmed>16261180</pubmed></ref><ref name=Zalutsky1990><pubmed>2114039</pubmed></ref>(27、46)。CA3錐体細胞への入力線維である苔状線維に100Hz程度の高頻度刺激を与えると、その直後にはシナプス応答が10倍程度に増大し(図3A、矢印)、それ以降は急速に漸減するが、約30分程度で、もとのレベルの2倍~数倍程度増強された状態で安定する。この際、シナプス後細胞の活動は必要なく、シナプス前終末の活動だけで誘導されることから、いわゆるヘブ型(Hebbian LTP)と区別し、非ヘブ型LTP(non-Hebbian LTP)と呼ばれる。長期的な放出確率の増大にシナプス前終末内のcAMPが関与していると考えられている<ref name=Weisskopf1994><pubmed>7916482</pubmed></ref>(47)。それに引き続く細胞内生化学過程についてはAキナーゼが関与するとの報告がある<ref name=Shahoha2022><pubmed>35444523</pubmed></ref> (48)。
 シナプス前性LTPの代表は、海馬CA3領域苔状線維 (mossy fiber) シナプスでのLTPである<ref name=Nicoll2005><pubmed>16261180</pubmed></ref><ref name=Zalutsky1990><pubmed>2114039</pubmed></ref>(27、46)。CA3錐体細胞への入力線維である苔状線維に100Hz程度の高頻度刺激を与えると、その直後にはシナプス応答が10倍程度に増大し(図3A、矢印)、それ以降は急速に漸減するが、約30分程度で、もとのレベルの2倍~数倍程度増強された状態で安定する。この際、シナプス後細胞の活動は必要なく、シナプス前終末の活動だけで誘導されることから、いわゆるヘブ型(Hebbian LTP)と区別し、非ヘブ型LTP(non-Hebbian LTP)と呼ばれる。長期的な放出確率の増大にシナプス前終末内のcAMPが関与していると考えられている<ref name=Weisskopf1994><pubmed>7916482</pubmed></ref>(47)。それに引き続く細胞内生化学過程についてはAキナーゼが関与するとの報告がある<ref name=Shahoha2022><pubmed>35444523</pubmed></ref> (48)。


68行目: 68行目:




図1:LTP誘導機構
図1:LTP誘導機構
A) 定常状態における神経伝達:シナプス前終末から放出されたグルタミン酸(●)が、シナプス後細胞に発現しているAMPA型グルタミン酸受容体を活性化することにより、ナトリウムイオンの流入、カリウムイオンの流出が起きる。放出されたグルタミン酸は、NMDA型受容体にも結合するが、細胞外のマグネシウムイオン(赤丸)により受容体チャネルがブロックされているため、イオンの移動は起きない。
A) 定常状態における神経伝達:シナプス前終末から放出されたグルタミン酸(●)が、シナプス後細胞に発現しているAMPA型グルタミン酸受容体を活性化することにより、ナトリウムイオンの流入、カリウムイオンの流出が起きる。放出されたグルタミン酸は、NMDA型受容体にも結合するが、細胞外のマグネシウムイオン(赤丸)により受容体チャネルがブロックされているため、イオンの移動は起きない。
B) 刺激によりシナプス後細胞が強く脱分極すると、NMDA型グルタミン酸受容体のマグネシウムブロックが外れ、ナトリウム、カリウムイオンの移動とともに、細胞内へとカルシウムイオンの流入がおきる。
B) 刺激によりシナプス後細胞が強く脱分極すると、NMDA型グルタミン酸受容体のマグネシウムブロックが外れ、ナトリウム、カリウムイオンの移動とともに、細胞内へとカルシウムイオンの流入がおきる。


92行目: 92行目:
C) AMPA型受容体がリン酸化を受け、単一チャネルのコンダクタンスが増大(右)することで、シナプス応答が増大するとする説も唱えられている。
C) AMPA型受容体がリン酸化を受け、単一チャネルのコンダクタンスが増大(右)することで、シナプス応答が増大するとする説も唱えられている。


図3:シナプス前性LTPの例(海馬苔状線維-CA3シナプスにおけるLTP)
図3:シナプス前性LTPの例(海馬苔状線維-CA3シナプスにおけるLTP)
マウス海馬スライス標本の歯状回の細胞層にタングステン双極電極を刺入して顆粒細胞を電気刺激することにより苔状線維を発火させ、細胞外電位記録法によりCA3領域の透明層に刺入したガラス管記録電極で興奮性シナプス後電位(excitatory postsynaptic potential: EPSP)を記録している。0.1Hzでベースラインの反応を記録したあと、図中の上向き矢印の時点で100Hzの高頻度刺激を1秒間与え、その後、0.1Hzに戻してさらに1時間以上EPSPを記録しているが、シナプス応答が約2倍に増大し、持続している。高頻度刺激を与える際にNMDA受容体のアンタゴニストであるD-APVを灌流投与した(グラフ中の黒いバー)条件下でLTPが誘導されていることから、苔状線維シナプスでのLTP誘導にはシナプス後細胞の活動が不要であることを示している。
マウス海馬スライス標本の歯状回の細胞層にタングステン双極電極を刺入して顆粒細胞を電気刺激することにより苔状線維を発火させ、細胞外電位記録法によりCA3領域の透明層に刺入したガラス管記録電極で興奮性シナプス後電位(excitatory postsynaptic potential: EPSP)を記録している。0.1Hzでベースラインの反応を記録したあと、図中の上向き矢印の時点で100Hzの高頻度刺激を1秒間与え、その後、0.1Hzに戻してさらに1時間以上EPSPを記録しているが、シナプス応答が約2倍に増大し、持続している。高頻度刺激を与える際にNMDA受容体のアンタゴニストであるD-APVを灌流投与した(グラフ中の黒いバー)条件下でLTPが誘導されていることから、苔状線維シナプスでのLTP誘導にはシナプス後細胞の活動が不要であることを示している。
   
   
== 参考文献 ==
== 参考文献 ==